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Regression

How do we go about addressing change and response in
variables?

Correlation only tells us the extent to which pairs of variables
are a linear function of each other. It does not tell us how
change in one translates into change in another.

Correlation also treats both variables as identical. Correlation
between ‘smile’ and ‘flowers’ is the same as the correlation
between ‘flowers’ and ‘smile’.

Our answer is Regression:

Regression models one variable as a dependent variable,
which is predicted by an independent variable (also known as
the predictor).

We write that yi = β0 + β1xi + ε
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The Regression Model

yi = β0 + β1xi + ε

This models a relationship between Y - the dependent variable
and X - the predictor.

β0 is the intercept – the expected value of y when x = 0

β1 is the slope coefficient. It describes the direction and
steepness of the regression line. It is the expected change in y
for a unit change in x , holding all else constant. This is the
most important piece of information for us, because it
describes the relationship between x and y .

xi is the predictor, treated as fixed (that is non-random or
‘error-less’) variable.

εi is the stochastic (random) component. It expresses the
disturbance or error term. It includes measurement error on y ,
omitted predictors and idiosyncratic sources of behavior. Error
is a very interesting animal (to be discussed later)...
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Example 1

A real example from Morg05.dta dataset on wages in the U.S.

I am interested in seeing how ‘gender’ affects ‘wage.’ I thus
regress: wage = β0 + β1sex + εi

In R: model<-lm(wage~sex)

My results are the following: wage = 19.350 + (−3.629)sex

What does this mean?

β0 = 19.350 This is telling us the average value of y when
x = 0. When does x = 0?

x = 0 means that sex=0, that is sex=male. Therefore, 19.35
is the average wage of a male.
β1 = −3.629 This is telling us the expected change in y when
x changes by 1. What does that mean?
When x shifts by 1, that is shifts from 0=male to 1=female.
Hence -3.690 is the average effect of being a woman on wage.
It decreases by $3.69 per hour. An average female wage is thus
19.35− 3.62 = 15.721.
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Example 2

Does being more religious lead to greater perceived happines?

happy = β0 + β1religiosity + εi

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8792 0.0813 84.65 0.0000
Religiosity 0.1455 0.0463 3.15 0.0017
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Regression Graph
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How does it work?

β̂1 =
∑

(Xi−X̄ )(Yi−Ȳ )∑
(Xi−X̄ )2 , β̂0 = Ȳ − β̂1 ∗ X̄

β̂1 the covariance of XY divided by the variance of X. It
minimizes the sum of squares of the residuals
This is the so-called Ordinary Least Squares Estimator:

Figure: default
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Why an Estimator?

β̂s are Estimators, because they estimate the true relationship
between X and Y , which is β. (We know samples, but we
care about populations, which we do NOT know.)

Since β̂s are derived from samples, it is clear that they are
likely to vary from sample to sample. The β̂s are estimates,
and they thus have a certain variance.

We can think of estimator variance as the uncertainty about
the point estimate (our best guess at the true value of β).
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Estimator Variance

From our sample, we know the standard error of the regression

σ̂ =

√
Σe2

i
N−2 (note that we burn 2 d.f. estimating β0 and β1)

This is the standard deviation of the Y values around the
estimated regression line.

We can derive the variance of β̂0 and β̂1, and consequently

their standard error: sβ̂0
=

√
Σx2

i

N∗Σ(xi−X̄ )2σ, and

sβ̂1
= σ√

Σ(xi−X̄ )2
.

What will be the distribution of our β̂s?

Remember, the Central Limit Theorem??? Yes, it will be
NORMAL!

It follows that β̂−β
σβ̂
∼ N(0, 1) and β̂−β

sβ̂
∼ tn−2

This is the t-test we can see in our statistical output.
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The t-test

The t-test in our statistical output asks the most fundamental
question: Is β̂ = 0?

This is effectively asking, is my estimate of β̂ sufficiently
different from 0? Does my variable have any effect?

Or What is the chance that the true value of β could be
0?

Easy, we did this before with our z- and t-tests.

We generally take the 95% confidence interval and ask
ourselves whether 0 lies outside this interval.

This tells us the statistical significance of a variable

Estimate Std. Error t value Pr(>|t|) [95% Conf. Int.]
(Intercept) 6.8792 0.0813 84.65 0.0000 6.719 7.038
Religiosity 0.1455 0.0463 3.15 0.0017 0.054 0.236
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Review

Regression equation: yi = β0 + β1xi + εi

The logic is that we minimize the squared residuals by fitting
the ‘best line’ through the data.

From our sample data, we obtain point estimates of β̂0, the
intercept, and β̂1, the slope coefficient.

The point estimates give us the ‘best guess’ of the values

Then, from the errors we are able to establish the standard
error of our estimators (β̂0, β̂1)

The standard error tells us the dispersion (or spread) of our
estimators, effectively telling us how certain we are about our
point estimates.
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Interpreting a Regression

Substantive Significance

How strong is the effect of X on Y ? Does a change in X lead
to a substantial change in Y .
This is a matter of argument, but you should report for
example that ‘having a BA, as opposed to a highschool
diploma increases your expected income by so many dollars.’

Statistical Significance

How sure are we about our result? Is it significantly different
from 0?
This has to do with the size of the standard error of our
estimator. We must choose a level of significance, which is
usually 95%. Then we perform a t-test, on whether our point
estimate is significantly different from 0. If yes, we can say
that our estimator ‘is statistically significant at the .05 level.’
An easy way to check what level our estimator is significant at,
we look at the p-value reported by R.
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Regression Output

Predicting Happiness (0-10) with Religiosity (0-6), ESS CZ

Estimate Std. Error t value Pr(>|t|) [95% Conf. Int.]
(Intercept) 6.8792 0.0813 84.65 0.0000 6.719 7.038
Religiosity 0.1455 0.0463 3.15 0.0017 0.054 0.236

The results of this model suggest that Religiosity is a
substantively and statistically significant predictor of
happiness.

Substantively, attending religious services every day as
opposed to never increases the expected happiness by about
9% (6 ∗ 0.1455 = 0.873, happy is a 10 point scale, thus
roughly 0.9 points out of 10)

Statistically, our t-value of 3.15 is significant at the .05 level
(as well as at the .01 level).

Shortcuts:
1) t-value> 2; 2) confidence interval does not pass through 0
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Linearity of Linear Regression

‘Linear’ Regression means that that the β coefficients of the
regression are linear, that is they are raised to the first power
only.

Linear Regression, however, can model non-linear relationships
between X and Y . That is, linear regression need not be
linear in the variables.

We can thus fit a quadratic model: yi = β0 +β1xi +β2x
2
i + εi ,

which models a curvilinear relationship between X and Y .
R will fit the βs in such a way as to minimize the square
residuals, that is it will draw the ‘best fitting’ regression curve.
Example: modeling curvilinear relationships (Functions Calculator)
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Regression Assumption #1

I. The most important assumption

1. Model is correctly specified

Formally: Mean Independence: E (εi ) = 0, which means that
the mean value of ε does not depend on any of the predictors.

Model includes all relevant predictors in the correct functional
form (squares, interactions etc.).

If this does not hold, there is omitted variable bias, the OLS
estimator is biased and inconsistent = WRONG

Specification error is a central problem for which there is no
statistical solution.

We must turn to theory!
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Assumptions about Errors

2. Linearity: y is a linear function of the xs.

Violation of 1. and 2. causes point estimate bias!

3. Normality: εi ∼ N(0, σ2) We assume that the error is
normally distributed (around the regression line).

3. is important for inference, allows us to use t-tests.

4. Homoscedasticity: Var(εi ) = σ2: variance of errors is
constant.

5. Nonautocorrelation: Cov(εi , εj) = 0 (i 6= j) , errors are
independent. (Problem in time-series data.)

4. and 5. do not effect point estimates, only determine the
standard errors.
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Decomposition of Sample Variance

Our main quest is to explain the variance in the dependent
variable Y

The values of Y differ because of the relationship between Y
and X , and because of random error.

The question is, how much of the observed variation on Y is
caused by X and how much of it is due to error.

This effectively tells us how much of the variance of Y is
explained by our model (X ) and how much of it is due to
(unexplainable) error.

It is thus important to ‘decompose’ the variance of Y :
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Decomposition of Sample Variance 2

Total Sum of Squares (TSS) =
∑

(Yi − Ȳ )2

Is a summary measure of the distances of observations on Y
from the mean. It is the total variation of the actual Y values
about their sample mean.

Regression Sum of Squares (RSS) =
∑

(Ŷi − Ȳ )2

The vertical distance of the regression line from Ȳ is the
variation of Y ascribed to X

Error Sum of Squares (ESS) =
∑

e2
i

The vertical distance of the observed point Yi from the
regression line (or the residual) is the variation in Y ascribed to
error

Therefore:∑
(Yi − Ȳ )2 =

∑
(Ŷi − Ȳ )2 +

∑
e2
i

TSS RSS ESS
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Decomposition of Sample Variance 3

Figure: Variance Decomposition
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Goodness of Fit

This leads to the measure of ‘goodness of fit’ R2, which is
fundamental for telling us how well our model does in
explaining our dependent variable Y

R2 is the ratio of variance explained by X and the total
variance:

R2 = RSS
TSS = 1− ESS

TSS

R2 is bounded between 0 and 1, where 0 means no variance of
Y is explained by X and 1 means all variance of Y is
explained by X (there is no error).

R2 effectively tells us how ‘tightly’ our observations lie around
the regression line.
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