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Regression

@ How do we go about addressing change and response in
variables?

@ Correlation only tells us the extent to which pairs of variables
are a linear function of each other. It does not tell us how
change in one translates into change in another.

@ Correlation also treats both variables as identical. Correlation
between ‘smile’ and ‘flowers’ is the same as the correlation
between ‘flowers’ and ‘smile’.

@ Our answer is Regression:

@ Regression models one variable as a dependent variable,
which is predicted by an independent variable (also known as
the predictor).

o We write that y; = Bo + B1x; + €
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The Regression Model

® yi=Po+ fixi+e
@ This models a relationship between Y - the dependent variable
and X - the predictor.

@ (o is the intercept — the expected value of y when x =0

@ (31 is the slope coefficient. It describes the direction and
steepness of the regression line. It is the expected change in y
for a unit change in x, holding all else constant. This is the
most important piece of information for us, because it
describes the relationship between x and y.

@ x; is the predictor, treated as fixed (that is non-random or
‘error-less’) variable.

@ ¢; is the stochastic (random) component. It expresses the
disturbance or error term. It includes measurement error on y,
omitted predictors and idiosyncratic sources of behavior. Error
is a very interesting animal (to be discussed later)...
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Example 1

@ A real example from Morg05.dta dataset on wages in the U.S.

@ | am interested in seeing how ‘gender’ affects ‘wage." | thus
regress: wage = (B + [P1sex + €;

@ In R: model<-1m(wage~sex)

@ My results are the following: wage = 19.350 + (—3.629)sex

@ What does this mean?

e o = 19.350 This is telling us the average value of y when
x = 0. When does x = 07
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Example 1

@ A real example from Morg05.dta dataset on wages in the U.S.

@ | am interested in seeing how ‘gender’ affects ‘wage." | thus
regress: wage = (B + [P1sex + €;

@ In R: model<-1m(wage~sex)

@ My results are the following: wage = 19.350 + (—3.629)sex

@ What does this mean?

e o = 19.350 This is telling us the average value of y when
x = 0. When does x = 07

e x = 0 means that sex=0, that is sex=male. Therefore, 19.35
is the average wage of a male.
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@ A real example from Morg05.dta dataset on wages in the U.S.

@ | am interested in seeing how ‘gender’ affects ‘wage." | thus
regress: wage = (B + [P1sex + €;

@ In R: model<-1m(wage~sex)

@ My results are the following: wage = 19.350 + (—3.629)sex

@ What does this mean?

e o = 19.350 This is telling us the average value of y when
x = 0. When does x = 07

e x = 0 means that sex=0, that is sex=male. Therefore, 19.35
is the average wage of a male.

e 31 = —3.629 This is telling us the expected change in y when
x changes by 1. What does that mean?
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Example 1

@ A real example from Morg05.dta dataset on wages in the U.S.

@ | am interested in seeing how ‘gender’ affects ‘wage." | thus
regress: wage = (B + [P1sex + €;

@ In R: model<-1m(wage~sex)

@ My results are the following: wage = 19.350 + (—3.629)sex

@ What does this mean?

e o = 19.350 This is telling us the average value of y when
x = 0. When does x = 07

e x = 0 means that sex=0, that is sex=male. Therefore, 19.35
is the average wage of a male.

e 31 = —3.629 This is telling us the expected change in y when
x changes by 1. What does that mean?

e When x shifts by 1, that is shifts from 0=male to 1=female.
Hence -3.690 is the average effect of being a woman on wage.
It decreases by $3.69 per hour. An average female wage is thus
19.35 — 3.62 = 15.721.

Jan Rovny Stress-Free Stats



Example 2

@ Does being more religious lead to greater perceived happines?

@ happy = o + [Bireligiosity + ¢;

Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 6.8792 0.0813  84.65 0.0000
Religiosity ~ 0.1455  0.0463  3.15  0.0017
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Regression Graph

Predicting Happiniess by Religiosity
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How does it work?

o fi= RGN Gy =¥ - X

o [ the covariance of XY divided by the variance of X. It
minimizes the sum of squares of the residuals
@ This is the so-called Ordinary Least Squares Estimator:
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Figure: default
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Why an Estimator?

e fs are Estimators, because they estimate the true relationship
between X and Y, which is 5. (We know samples, but we
care about populations, which we do NOT know.)

@ Since f3s are derived from samples, it is clear that they are
likely to vary from sample to sample. The s are estimates,
and they thus have a certain variance.

@ We can think of estimator variance as the uncertainty about
the point estimate (our best guess at the true value of 3).
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Estimator Variance

@ From our sample, we know the standard error of the regression

2
6 =1/ /)\?ilz (note that we burn 2 d.f. estimating 5y and (1)

@ This is the standard deviation of the Y values around the
estimated regression line.

@ We can derive the variance of 8y and (1, and consequently
¥ x2

Xy and

their standard error: gy = Mo (o X7

N © M
%61 VE(xi—X)2

o What will be the distribution of our 3s?
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Estimator Variance

@ From our sample, we know the standard error of the regression

2
6 =1/ /)\?ilz (note that we burn 2 d.f. estimating 5y and (1)

@ This is the standard deviation of the Y values around the
estimated regression line.

@ We can derive the variance of 8y and (1, and consequently
¥ x2

Xy and

their standard error: gy = Mo (o X7

T e X
o What will be the distribution of our 3s?

@ Remember, the Central Limit Theorem??? Yes, it will be
NORMAL!
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Estimator Variance

@ From our sample, we know the standard error of the regression

2
6 =1/ /)\?ilz (note that we burn 2 d.f. estimating 5y and (1)

@ This is the standard deviation of the Y values around the
estimated regression line.

@ We can derive the variance of 8y and (1, and consequently
¥ x2

Xy and

their standard error: gy = Mo (o X7

T e X
o What will be the distribution of our 3s?

@ Remember, the Central Limit Theorem??? Yes, it will be
NORMAL!

o It follows that Bg;ﬁ ~ N(0,1) and Bs;ﬁ ~ th_o
] 5

@ This is the t-test we can see in our statistical output.

Jan Rovny Stress-Free Stats



The t-test

@ The t-test inAour statistical output asks the most fundamental
question: Is § =07

e This is effectively asking, is my estimate of 3 sufficiently
different from 0?7 Does my variable have any effect?

@ Or What is the chance that the true value of 5 could be
07

e Easy, we did this before with our z- and t-tests.

e We generally take the 95% confidence interval and ask
ourselves whether 0 lies outside this interval.

@ This tells us the statistical significance of a variable

Estimate  Std. Error tvalue Pr(>[t]) [95% Conf. Int.]
(Intercept) 6.8792 0.0813 84.65 0.0000 6.719 7.038
Religiosity 0.1455 0.0463 3.15 0.0017 0.054 0.236
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Review

@ Regression equation: y; = [y + S1x; + €;

@ The logic is that we minimize the squared residuals by fitting
the ‘best line' through the data.

@ From our sample data, we obtain point estimates of ﬁAo, the
intercept, and (1, the slope coefficient.

@ The point estimates give us the ‘best guess' of the values

@ Then, from the errors we are able to establish the standard
error of our estimators (5o, 1)

@ The standard error tells us the dispersion (or spread) of our
estimators, effectively telling us how certain we are about our
point estimates.
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Interpreting a Regression

@ Substantive Significance
e How strong is the effect of X on Y? Does a change in X lead
to a substantial change in Y.
e This is a matter of argument, but you should report for
example that ‘having a BA, as opposed to a highschool
diploma increases your expected income by so many dollars.’

@ Statistical Significance

e How sure are we about our result? Is it significantly different
from 07

e This has to do with the size of the standard error of our
estimator. We must choose a level of significance, which is
usually 95%. Then we perform a t-test, on whether our point
estimate is significantly different from 0. If yes, we can say
that our estimator ‘is statistically significant at the .05 level.’

e An easy way to check what level our estimator is significant at,
we look at the p-value reported by R.
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Regression Output

Predicting Happiness (0-10) with Religiosity (0-6), ESS CZ

Estimate  Std. Error tvalue Pr(>[t]) [95% Conf. Int.]
(Intercept) 6.8792 0.0813 84.65 0.0000 6.719 7.038
Religiosity 0.1455 0.0463 3.15 0.0017 0.054 0.236

@ The results of this model suggest that Religiosity is a
substantively and statistically significant predictor of
happiness.

@ Substantively, attending religious services every day as
opposed to never increases the expected happiness by about
9% (6 x 0.1455 = 0.873, happy is a 10 point scale, thus
roughly 0.9 points out of 10)

@ Statistically, our t-value of 3.15 is significant at the .05 level
(as well as at the .01 level).

@ Shortcuts:

e 1) t-value> 2; 2) confidence interval does not pass through 0
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Linearity of Linear Regression

@ ‘Linear’ Regression means that that the 3 coefficients of the
regression are linear, that is they are raised to the first power
only.

@ Linear Regression, however, can model non-linear relationships
between X and Y. That is, linear regression need not be
linear in the variables.

@ We can thus fit a quadratic model: y; = By + B1x + Box? + €,
which models a curvilinear relationship between X and Y.

@ R will fit the s in such a way as to minimize the square
residuals, that is it will draw the ‘best fitting’ regression curve.

@ Example: modeling curvilinear relationships (Functions Calculator)

Jan Rovny Stress-Free Stats



Regression Assumption #1

I. The most important assumption

1. Model is correctly specified

e Formally: Mean Independence: E(e;) = 0, which means that
the mean value of ¢ does not depend on any of the predictors.

@ Model includes all relevant predictors in the correct functional
form (squares, interactions etc.).

@ If this does not hold, there is omitted variable bias, the OLS
estimator is biased and inconsistent = WRONG

@ Specification error is a central problem for which there is no
statistical solution.

@ We must turn to theory!
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Assumptions about Errors

@ 2. Linearity: y is a linear function of the xs.
e Violation of 1. and 2. causes point estimate bias!
o 3. Normality: ¢; ~ N(0,02) We assume that the error is
normally distributed (around the regression line).
e 3. is important for inference, allows us to use t-tests.

2. variance of errors is

@ 4. Homoscedasticity: Var(ej) = o
constant.

e 5. Nonautocorrelation: Cov(ej,€j) =0 (i # j) , errors are
independent. (Problem in time-series data.)

e 4. and 5. do not effect point estimates, only determine the
standard errors.
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Decomposition of Sample Variance

@ Our main quest is to explain the variance in the dependent
variable Y

@ The values of Y differ because of the relationship between Y
and X, and because of random error.

@ The question is, how much of the observed variation on Y is
caused by X and how much of it is due to error.

@ This effectively tells us how much of the variance of Y is
explained by our model (X) and how much of it is due to
(unexplainable) error.

@ It is thus important to ‘decompose’ the variance of Y

Jan Rovny Stress-Free Stats



Decomposition of Sample Variance 2

o Total Sum of Squares (TSS) = > (Y; — Y)?

e Is a summary measure of the distances of observations on Y
from the mean. It is the total variation of the actual Y values
about their sample mean.

o Regression Sum of Squares (RSS) = S (V; — Y)?
o The vertical distance of the regression line from Y is the
variation of Y ascribed to X

e Error Sum of Squares (ESS) = > &?

o The vertical distance of the observed point Y; from the
regression line (or the residual) is the variation in Y ascribed to

error
Therefore: _ o
Y(Yi=Y)? o= X(Yi-Y)? + Y€
TSS RSS ESS
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Decomposition of Sample Variance 3

Figure: Variance Decomposition

Jan Rovny Stress-Free Stats



Goodness of Fit

@ This leads to the measure of ‘goodness of fit' R?, which is
fundamental for telling us how well our model does in
explaining our dependent variable Y

@ RZ? is the ratio of variance explained by X and the total

variance:
2 _  RSS _ __ESS
R - TSS 1 TSS

@ RZis bounded between 0 and 1, where 0 means no variance of
Y is explained by X and 1 means all variance of Y is
explained by X (there is no error).

o R? effectively tells us how ‘tightly’ our observations lie around
the regression line.
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