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Sampling and Inference
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Sampling

In reality, we never observe the population. We only observe
samples!

Consequently, we do not know the mean and the variance of
the population distribution, only the mean and variance of the
sample.

Key questions:
How certain are we that our sample mean represents the
population mean?
What is the confidence interval around our sample mean,
where we can expect the population mean to lie?

This is inferential statistics: we learn from samples about
populations.
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Example of inference 1

A large bag contains a million marbles, red and white. The
proportion of red marbles is π. π is constant but unknown. We
want to find out π. It is too costly to count all red/white marbles,
so we use inferential statistics:
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Example of inference 2

What is the true ratio of red marbles?

let’s suppose we draw 3 marbles out at random and that the
first is white, the second is red, and the third is white.

What would be the probability of that particular sequence,
WRW, if π were equal to, say, 0.2?

If π = 0.2, then the probability of drawing a sequence WRW
would be 0.8 ∗ 0.2 ∗ 0.8 = 0.128
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Example of inference 3

What is the true ratio of red marbles?

What would be the probability of that particular sequence,
WRW, if π were equal to, say, 0.7?

If π = 0.7, then the probability of drawing a sequence WRW
would be 0.3 ∗ 0.7 ∗ 0.3 = 0.063

Notice that π = 0.7 is less likely to have produced the
observed sequence WRW than π = 0.2
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Example of inference 4

What is the true ratio of red marbles?

Give the observed sequence WRW, what is your best guess of
π?

π = 1/3 = 0.333...,

But ideally, we would have a bigger sample of, say, 20 marbles.

And we would like to draw a number of such samples, plotting
the value of π for each one.

What would we observe and why?
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Central Limit Theorem

To establish our knowledge of the population from samples we
rely on the Central Limit Theorem, a fundament of
statistics!

When we take a set of samples from ANY distribution, the
distribution of the sample means will be normal, and its mean
will be the same as the mean of the original distribution.

Example 1: Flip a coin 20 times, count the number of heads.
Repeat 1,000,000 times and each time plot the number of
heads.

You will have a normal distribution.

Example 2: Link
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Central Limit Theorem

Lessons:

As sample size increases, sample standard deviation decreases.
Sample mean 6= population mean, but with sample mean and
sample s.d., we can use the CLT to construct a confidence
interval where we can expect the population mean to lie.
We can measure our uncertainty!
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Distributions and the Normal Curve
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Distributions

A distribution describes the range of possible values of a
random variable, and the frequency with which values occur.

In the case of discrete variables (variables that take on
whole number values: 1,2,45 etc.)

Probability distribution tells us the probability that a given
value occurs

In the case of continuous variables (variables that take on
real numbers: 1.346, -17.48 etc.)

Probability distribution tells us the probability of a value falling
within a particular interval

Example: What is the distribution of height in our class?
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PDF and CDF of Discrete Variables

Knowledge of a distribution of variable X gives us the ability
to determine the probability of particular values x occurring.

We use two different ways of determining probability of
occurrence:

1. Probability Density Function (PDF): tells us the
probability of particular values: PDF (x) = Pr(X = x)
2. Cummulative Distribution Function (CDF): tells us the
probability that X takes on a value less than, or equal to x :
CDF (x) = Pr(X ≤ x)

For example: 1=Labour, 2=Cons, 3=LibDem

Party PDF CDF

1 .4 .4
2 .35 .75
3 .25 1
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PDF and CDF of Continuous Variables

Knowledge of a distribution of variable X gives us the ability
to determine the probability of x lying within a certain data
interval.

1. PDF: cannot give us a probability for a particular value of
X (Pr(X = x) = 0)).
Can only tell us the probability of x lying in a certain interval:

Pr(X ∈ [a, b]) =
∫ b

a
f (x)dx .

Given the laws of probability, it must be true that∫∞
−∞ f (x)dx = 1
2. CDF: tells us the probability that X takes on a value less
than, or equal to x : CDF (x) = Pr(X ≤ x)
CDF (x) = Pr(X ≤ x) =

∫ x

−∞ f (x)dx
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Kinds of Distributions

There are many many many different types of distributions
that have various parameters, depending on what they
represent

e.g. Binomial distribution plots the probability of the number
of successes in a sequence of n independent yes/no
experiments. That is, flip a coin 10 times and calculate the
number of heads. Binomial Parameters N=10, p=.5.
e.g. a Bimodal distribution
e.g. a Uniform distribution...etc, etc, etc.

The most significant and magical distribution is the normal
distribution
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Normal Distribution 1

aka Gaussian Distribution, aka the Bell Curve...

PDF: f (x) = 1
σ
√

2π
e−

(x−µ)2

2σ2

It is defined by two parameters, mean µ and variance σ2.
When X is normally distributed we write: X ∼ N(µ, σ2)
It is 1) Continuous, 2) Unbounded, 3) Symmetrical about the
mean, 4) mean=mode=median, 5) inflections are at µ± σ2
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Normal Distribution 2
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Probabilities Under the Standard Normal Curve

Since we know the PDF of the standard normal curve, we
know the probabilities of data lying within various intervals of
the normal curve.
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Transformations of Normal Curves

What if we don’t have a standard normal distribution: X is
not distributed N(0, 1)?

No problem, since we are dealing with continuous (i.e.
interval) data, we can transform any normal distribution to a
standard normal distribution!

1. Subtract the mean of X (to get mean=0), 2. Divide by the
standard deviation of X (to get s.d.=1). This way we arrive
at so-called Z-score. (We now refer to our variable as Z )

The Z-test then is: Z = X−µ
σ

This way we arrive at a the standard normal distribution,
where we know probabilities Pr(Z ≤ z).
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Z-scores

Refering to the Z-table, we can determine the probability of z
lying within a particular interval of our variable distribution
(which has now been turned into standard normal)
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Link
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Example 1

We have variable X ∼ N(5, 16), what is the probability that X
takes on a value smaller or equal to 13? That is Pr(X ≤ 13).

Here µ = 5, σ2 = 16, σ = 4
Need to transform X into Z-scores:
Z = X−µ

σ = 13−5
4 = 2

Now Pr(X ≤ 13) = Pr(Z ≤ 2)
Refer to Z table: Z of 2 translates to .9772
This means that 97.72% of the standard normal distribution
lies in the interval [−∞, 2]

Pr(X ≤ 13) = .9772
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Example 2

X ∼ N(5, 16), what is Pr(X > 8)?

Pr(X > 8) = 1− Pr(X ≤ 8)

Z = 8−5
4 = .75; 1− Pr(X ≤ 8) = 1− Pr(Z ≤ .75) =

1− CDF (.75) = 1− .7734 = .2266
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Confidence Intervals

Similarly, we can consider an interval around the mean of a
distribution
Can we be confident at the 0.05 significance level that X is
different from µ?
That is the same as saying “Does X lie within the 95%
confidence interval around µ?”

µ = 0;α = significance level (0.05)
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Example 3

X ∼ N(5, 16)

Is 7.5 significantly different from the mean of X?

Significantly different means that it is outside the 95%
confidence interval of X

The 95% confidence interval covers 95% of the area under the
curve around the mean.
It is thus [−1.96,+1.96] on the Z-scores
Where is 7.5 in terms of Z-scores: Z = 7.5−5

4 = .625
Since .625 is clearly within the [−1.96,+1.96] interval, 7.5 is
NOT significantly different from the mean of X .
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Working with Samples

The problem:

We DO NOT KNOW the population s.d. σ, but only the
sample s.d. s.
We cannot use z-scores and z-table, because it assumes very
large number of observations.
It is thus not appropriate for small samples we usually work
with
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Solution:

We use sample s.d. s to determine standard error = s/
√
N

Replace z-scores with t-scores and t-table, which take into
consideration samples size
t = X−x̄

sx/
√

N

We can determine the confidence interval around our sample
mean: c .i . = x̄ ± t ∗ s.e.
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Z- and T-distributions

T-distribution has heavier tails, to account for loss of
information in small samples
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Z- and T-distributions

T changes with the degrees of freedom (ν) available
The greater the d.f., the more T resembles Z

T-table
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Degrees of Freedom

Number of values that are free to vary, in other words:

We ask information of our data.

The total amount of information our data can give us is N

The degrees of freedom is N minus the information we are
asking of our data

E.g.: sample s.d. s has N − 1 degrees of freedom,
It is calculated using N and the sample mean x̄ .
The calculation of x̄ uses one degree of freedom.
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Z-tests v. T-tests

Fortunately for us, the t-distribution converges on a normal
distribution when samples are large

With large samples (N > 1000), the t-test produces the same
results as the z-test!

Rules of thumb for when to use a Z-test or a T-test:

Z-test: when population variance σ2 is known, or when
population variance σ2 is unknown, but we have a large
(N > 1000) sample.
T-test: when population variance σ2 is unknown and we have
a small sample.

R and other statistical packages only use T, because with T
you are always on the safe side...
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Example of Sampling Distribution
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Example

The following is observed GPA for 6 students:
2.80, 3.20, 3.75, 3.10, 2.95, 3.40

Calculate a 95% confidence interval for the population mean
GPA.

In other words, given the above information, where would we
most likely (95%) expect to see the population GPA to be?
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Solution

Mathematically:
obs : (2.80, 3.20, 3.75, 3.10, 2.95, 3.40)
N = 6 c.i . = x̄ ± t ∗ s.e. s.e. = sx/

√
N

c .i . = 3.2± 2.571 ∗ 0.138 = [2.844; 3.556]

In R:
x<-c(2.80, 3.20, 3.75, 3.10, 2.95, 3.40)

mean(x)

t.critical=2.571 #obtain from t-table 95%, d.f.=6-1

N=6

s.e=sd(x)/sqrt(N)

ub=mean(x)+t.critical*s.e

lb=mean(x)-t.critical*s.e
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Hypothesis Testing
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A hypothesis

A testable statement about relationships between
characteristics

Since Karl Popper, scientific inquiry is not expected to prove
facts, but rather to falsify or confirm theoretical postulates.

The logic we take when testing hypotheses in statistical
methods is thus a ‘negative’ logic:

Each hypothesis has a logical opposite which we call the null
hypothesis and denote it H0.

In statistics we often set up a null hypothesis which we seek
to reject. If we reject the null, then the hypothesis of interest
is supported by our analysis.
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Example from last lecture

X ∼ N(5, 16)

Is 7.5 significantly different from the mean of X?

H1 : 7.5 6= X̄
H0 : 7.5 = X̄

7.5 in terms of Z-scores: Z = 7.5−5
4 = .625

.625 is clearly within the [−1.96,+1.96] interval, thus 7.5 is
too close to X̄ . We fail to reject the null hypothesis.

That means that H0 stands and H1 is not supported. 7.5 is
not significantly different from X̄ .
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Hypothesis Testing Procedure

1 State a null and alternative hypothesis: H0 : µ = µ0,
Ha : µ 6= µ0

2 Select a level of significance of interest: α = .05 (we want to
be 95% sure.)

3 Determine the sampling distribution of the test statistic. (If
we are dealing with a means test and we know σ, we use the
standard normal distribution and its Z statistic, if we are
dealing with a means test and we don’t know σ we use
Student’s t distribution and the T statistic.)

4 Calculate the test statistic (for z: z = X−µ
σ )

5 Find the critical value in the appropriate statistical table

6 Make a conclusion about the null hypothesis (reject or fail to
reject)
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Test of Statistical Significance

Do men and women view gay marriage differently?

A feeling thermometer on gay marriage 0=fully oppose;
100=fully support

Poll: Women X̄ = 51, s = 4; men X̄ = 46, s = 8

Difference: 51− 46 = 5;

N=100 women, 100 men

Does the sample difference reflect the population difference or just
sampling error?
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1. Stating the hypotheses

Ha: There is a difference in women’s and men’s feelings
toward gay marriage in the population

H0: There is NO difference in women’s and men’s feelings
toward gay marriage in the population.
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2. Deciding the significance level

Two possible errors we can commit in statistics:

Type I error: finding a relationship where there is none (false
positive)
Type II error: finding no relationship where there is one (false
negative)

Usually select significance level α = 0.05 (or 5%)

Rejecting H0 will commit Type I error (false positive) no more
than 5 times in 100
Rejecting H0 only if the observation (the difference of 5
between women and men) could have occurred by chance
fewer than 5 times out of 100.
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3. The sampling distribution

Comparing two means – CLT – normal distribution

T or Z? N < 1000, so prefer T

Jan Rovny Quantitative Analysis and Empirical Methods



4. The test statistic

As before we take the observed or expected value and subtract
our null from it:

T = Ha−H0

sediff

But need to calculate the s.e. of the difference

sediff =
√
se2

1 + se2
2 =

√
se2

women + se2
men

sew = s√
N

= 4√
100

= 0.4; sem = s√
N

= 8√
100

= 0.8

sediff =
√
se2

1 + se2
2 =
√

0.42 + 0.82 = 0.894

Back to T:

T = Ha−H0

sediff
= diff−0

sediff
= 5−0

0.894 = 5.593
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5. and 6. Critical value and Conclusion

How likely are we to get a T value of 5.593 if H0 were true?

Same as asking: What is the probability of scoring 5.593 on
the T-distribution? (df=n1+n2-2)

T-table

The cutoff at the 0.05 significance level is about 1.984, so it is
extremely unlikely to get 5.593 by chance.

Conclusion:

Reject H0.
The difference of 5 is statistically significant. There is a
significant difference between women’s and men’s feelings
towards gay marriage. Women are significantly more in
support.
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5. and 6. Critical value and Conclusion

Alternatively, using confidence intervals:

A 95% confidence interval around the difference (5) would be

X ± t ∗ se = 5± 1.984 ∗ 0.894 = 5± 1.774
The 95% confidence interval is [3.226; 6.774]

Conclusion:

95 times out of a 100, the sample difference in women’s and
men’s feelings on gay marriage will lie between 3.226 and
6.774.
We are thus confident (at the 0.05 level) that there is a true
difference between their opinion in the population.
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Two-Tailed v. One-Tailed Tests

Until now, we have been doing our tests as if we had no
expectation about the direction in which we expect 0 to lie.

As a result, when we were testing whether our observed value
is significantly different from, say, 0, we looked at both ends
(or tails) of the distribution of our statistic of interest. This
was a two-tailed test.

In reality, we often have theoretical expectations about the
direction where 0 lies.

If we find a value of, say, 5 (such as in our example), and
question whether it is significantly different from 0, why
should we look for 0 on the right tail? It will not be there.

Consequently, when testing whether a statistic is significantly
different from 0, we would expect 0 to be on one particular
side of the distribution. Here we can do a one-tailed test.
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Two-Tailed v. One-Tailed Tests
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