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Introduction

In the previous class we learned about processes in a single time-series. Most importantly, we learned about
stationarity – whether a distribution of time-series segments are comparable across the time-series, and about
dependence – whether the series is independent of previous observations. We also learned about four key
types of time-series processes – white noise, moving average, autoregression, and integration. All these lessons
will be useful to us as we move on to consider bivariate time-series in this class.

In this lesson, we will learn how to assess associations between time-series. This will bring us to consider
substantively interesting questions about causal flow between time-series variables, studying whether and
how one series xt leads to yt.

To assess the causal flow xt → yt we can consider three possible approaches:

• Prewhitening
• Granger causality
• Error correction models of cointegration

Prewhitening

If we have two time-series that are white noise processes, we can see their association (causation) by looking at
how the two series are correlated at different lags and leads (forward steps in the time-series). It is important
to note that causation is by definition asymmetrical. If x→ y, then it is not true that y → x. Time-series
offers a particular advantage in the study of causality, in that it allows us to see the order in which series
respond to, or are associated with, one another. Causal order implies that the predictor ‘moves’ first, and
the dependent variable ‘responds’ afterwards. That implies that lagged values of x (that is xt−1) are be
correlated with y (that is yt), but not the reverse.

As we saw in the last lesson, real world time-series, however, have various error aggregation processes, such
as autoregression, moving average, or integration (ARIMA). In order to observe the causal dynamics between
time-series, we need to remove the ‘error filter’, that is, we need to first model the ARIMA processes in our
series, in order to observe x and y as white noise. This process is called prewhitening. Then, we can assess
any causal association between the series.

Let’s take a look in R at some real time-series. First, let’s call up the necessary libraries, and load the data
from the course website:
library(rio) #for importing data
library(tseries) #for stationarity test

## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
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D<-import("https://jan-rovny.squarespace.com/s/varexample.dta")
head(D)

## date fedfunds inflation unrate
## 1 0 3.933333 1.6881123 5.133333
## 2 1 3.696667 1.2506870 5.233333
## 3 2 2.936667 1.4828017 5.533333
## 4 3 2.296667 1.1138498 6.266666
## 5 4 2.003333 0.9187145 6.800000
## 6 5 1.733333 0.8953280 7.000000

This dataset provides time-series information about inflation rate D$inflrate and unemployment rate
D$unrate. Let’s test whether there is a relationship between them, and what the causal direction is. First,
let’s declare these variables as time-series in R:
ts(D$inflation) #declare time series
ts(D$unrate) #declare time series

Identification

Next, we need to fit a correct ARIMA model to both series. Referring to what we learned in the introduction
to time-series, to do this, we must first identify, and then estimate the ARIMA structure in both series. Let’s
start with identification:
#1 Identification
par(mfrow = c(2, 3)) #get 2 by 3 graph window
plot.ts(D$inflation, ylab = "inflation", main="")
acf(D$inflation, lag.max = 10, ylab="ACF", main="")
pacf(D$inflation, lag.max = 10, ylab = "PACF", main="") #AC declines slowly, looks might have a trend, PAC suggests AR1
adf.test(D$inflation) #fail to reject null, suggests unit root and integration

##
## Augmented Dickey-Fuller Test
##
## data: D$inflation
## Dickey-Fuller = -2.6941, Lag order = 5, p-value = 0.2851
## alternative hypothesis: stationary
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The
AC function above declines slowly, which suggests that we might have a trend. This is supported by the
Dickey-Fuller test, where we fail to reject the null of stationarity. The PAC function suggests an AR1 process.
We should thus model an ARIMA(1,1,0) for the inflation series. Let’s look at unemployment rate:
#1 Identification
par(mfrow = c(2, 3)) #get 2 by 3 graph window
plot.ts(D$unrate, ylab = "unrate", main="")
acf(D$unrate, lag.max = 10, ylab="ACF", main="")
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pacf(D$unrate, lag.max = 10, ylab = "PACF", main="")
adf.test(D$inflation) #fail to reject null, suggests unit root and integration

##
## Augmented Dickey-Fuller Test
##
## data: D$inflation
## Dickey-Fuller = -2.6941, Lag order = 5, p-value = 0.2851
## alternative hypothesis: stationary
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Unemployment seems to be following a similar pattern as inflation, suggesting an AR(1) with integration.
We should thus model its error aggregation process as ARIMA(1,1,0).

Estimation

Having identified both time-series processes, let’s now estimate the appropriate ARIMA models, and capture
the residuals left behind – these should now be white noise.
#a) Inflation
model.inflation<-arima(D$inflation, order=c(1,1,0)) #model error aggregation filter
model.inflation

##
## Call:
## arima(x = D$inflation, order = c(1, 1, 0))
##
## Coefficients:
## ar1
## -0.3100
## s.e. 0.0658
##
## sigma^2 estimated as 1.197: log likelihood = -313.86, aic = 631.71
infl.res<-model.inflation$residuals #take residuals from model, should be white noise
#check residulas
ts.plot(infl.res)
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pacf(infl.res, lag.max = 10, ylab = "PACF", main="")
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adf.test(infl.res) #residuals are stationary, and graphs look like white noise !!!

## Warning in adf.test(infl.res): p-value smaller than printed p-value

##
## Augmented Dickey-Fuller Test
##
## data: infl.res
## Dickey-Fuller = -5.7638, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
#b) unemployment rate
model.unrate<-arima(D$unrate, order=c(1,1,0)) #model error aggregation filter
model.unrate

##
## Call:
## arima(x = D$unrate, order = c(1, 1, 0))
##
## Coefficients:
## ar1
## 0.6589
## s.e. 0.0520
##
## sigma^2 estimated as 0.06525: log likelihood = -11.56, aic = 27.11
rate.res<-model.unrate$residuals #take residuals from model, should be white noise
#check residulas
ts.plot(rate.res)
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adf.test(rate.res) #residuals of the model are stationary, and graphs look like white noise !!!

## Warning in adf.test(rate.res): p-value smaller than printed p-value

##
## Augmented Dickey-Fuller Test
##
## data: rate.res
## Dickey-Fuller = -6.2029, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary

Wonderful, our results above suggest that we have managed to estimate the error aggregation processes in
inflation and unemployment rate correctly. The residuals of these are white noise. We have thus removed the
error aggregation filter from these series.

Cross-correlation

We can now check the causal association between our two series. We will do this by cross-correlating them.
Before we do that, let’s look at the logic of cross-correlation. We define a random variable x and then a
variable y, which is a function of the first lag of x plus some random error, mathematically: yt = xt−1 + et.
Then, let’s look at the cross-correlation function between x and y:
x<-rnorm(1000,0,1) #random x
y<-lag(x)+rnorm(1000,0,1) #y as function of lag of x plus error
ccf(x,y) #cross-correlation function
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The cross-correlation function above shows a positive effect of x on y in the first lag (that is at t− 1). This
means that the as x increases, y will increase one period later. (Note that negative lags – on the left side of
the graph above – are leads, or steps forward in the series.)

Now, knowing the logic of cross-correlation, let’s finally look at the relationship between inflation and
unemployment:
par(mfrow = c(1, 1)) #make plot be 1 by 1
ccf(infl.res, rate.res, lag.max = 10) #CCF = Cross-Correlation Function
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The cross-correlation function above shows negative 1st and 4th lag effect. This means that unemployment
lags inflation in the 1st and the 4th periods. This means that higher values of inflation cause lower values
of unemployment 1 and 4 periods later. Note that if the lags were negative (=leads), it would suggest the
reversed causal flow. We can thus conclude that inflation has a negative causal effect on unemployment. As
inflation increases, unemployment decreases.

One final word of caution: the prewhitening process is data driven. This means that we are letting data
speak without theory. . . You should always view this with suspicion!

Granger Causality

Granger causality is another approach to studying relationships between two time-series. Granger causality
rests on the fundamental dual logic: First, series y will be a function of its own past. Second, if x causes y it
must be the lags of x, that is xt−1 and so on, cause y now, that is yt. Logically then, adding past information
of x to predict y must improve our model.

Mathematically, this dual logic is expressed in the following way:

1) yt is a function if its own past: yt = β0 + β1yt−1 + β2yt−2 + ...+ βkyt−k + et

2) If x causes y, then the past of x must improve our prediction of yt: yt = β0 + β1yt−1 + ...+ βkyt−k +
γ1xt−1 + ...+ γkxt−k + et

In order to conclude that the causal flow goes indeed from x to y, and not the other way around, the Granger
causality approch then reverses the model, seeing if the past of y predicts the present of x.

In R, we can use the grangertest() function in the lmtest package to fit Granger models. Let’s see if we
can assess the causal flow in the arms race between India and Pakistan. The following code loads in data on
the military spending in these two countries over time.
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A<-as.data.frame(matrix(c(1988 , 7941 , 2500 ,
1989 , 8161 , 2499 ,
1990 , 8051 , 2636 ,
1991 , 7532 , 2823 ,
1992 , 7209 , 2997 ,
1993 , 8137 , 2993 ,
1994 , 8109 , 2917 ,
1995 , 8340 , 2965 ,
1996 , 8565 , 2961 ,
1997 , 9307 , 2837 ,
1998 , 9387 , 2833 ,
1999 , 10482 , 2858 ,
2000 , 10900 , 2867 ,
2001 , 11397 , 3071 ,
2002 , 11426 , 3304 ,
2003 , 12394 , 3350), ncol=3, byrow=T))

#change variable names in dataframe
library(data.table)
setnames(A, "V1", "year")
setnames(A, "V2", "India")
setnames(A, "V3", "Pakistan")

Now, let us assess which country’s military spending leads to the other using Granger causality. We first
model India’s military spending as a function of Pakistan’s.
library(lmtest)

## Loading required package: zoo

##
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
grangertest(India~Pakistan,order=4, data=A)

## Granger causality test
##
## Model 1: India ~ Lags(India, 1:4) + Lags(Pakistan, 1:4)
## Model 2: India ~ Lags(India, 1:4)
## Res.Df Df F Pr(>F)
## 1 3
## 2 7 -4 2.1548 0.2772

The results above effectively compare two models. In the first we are predicting India’s spending with ‘order’
lags of India’s spending and lags of Pakistan’s spending. The order function sets how many lags we should
consider. In the second model, we are predicting India’s spending only with the lags of India’s spending. The
final F-test shows us whether the additional information about Pakistan’s military spending in model one
improves our prediction of India’s spending. If the p-value is significant, it does, if it is insignificant, it does
not. Here, the p-value is insignificant, and so we conclude that Pakistan’s military spending does not seem to
cause India’s. Now, let’s turn the test around:
grangertest(Pakistan~India,order=4, data=A)

## Granger causality test
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##
## Model 1: Pakistan ~ Lags(Pakistan, 1:4) + Lags(India, 1:4)
## Model 2: Pakistan ~ Lags(Pakistan, 1:4)
## Res.Df Df F Pr(>F)
## 1 3
## 2 7 -4 23.976 0.01297 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now we are testing whether Pakistan’s spending is caused by India’s. Seeing a significant p-value on the
F-test, we conclude that yes, it does. Given the information from the two tests, we can conclude that the
causal order in this arms race is India→Pakistan!

Multiple Granger Causality

The logic of Granger causality is very applealing. We can use models based on this logic to let data
atheoretically speak for themselves, testing relationships between many variables. This can be done using
so-called Vector Autoregressive (VAR) modelling. It effectively means that we put all variables on both sides
of the equation. . . which is an estimation travesty. . .

Let’s go back to our D data frame with information in inflation, unemployment, and federal funds. We can
estimate the effect of all these variables on all variables using vector autoregression applied in the VAR()
function in the vars library in R.
#create a frame with variables of interest
dat<-cbind(D$fedfunds,D$inflation,D$unrate)

#estimate the effects of all variables on all variables
library(vars)

## Loading required package: MASS

## Loading required package: strucchange

## Loading required package: sandwich

## Loading required package: urca
est <- VAR(dat, p = 4, type = "const", season = NULL, exog = NULL) #p sets number of lags

## Warning in VAR(dat, p = 4, type = "const", season = NULL, exog = NULL): No column names supplied in y, using: y1, y2, y3 , instead.
summary(est)

##
## VAR Estimation Results:
## =========================
## Endogenous variables: y1, y2, y3
## Deterministic variables: const
## Sample size: 205
## Log Likelihood: -512.453
## Roots of the characteristic polynomial:
## 0.9671 0.9671 0.8455 0.8455 0.6634 0.6634 0.5359 0.4968 0.4968 0.4521 0.3271 0.3271
## Call:
## VAR(y = dat, p = 4, type = "const", exogen = NULL)
##
##
## Estimation results for equation y1:
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## ===================================
## y1 = y1.l1 + y2.l1 + y3.l1 + y1.l2 + y2.l2 + y3.l2 + y1.l3 + y2.l3 + y3.l3 + y1.l4 + y2.l4 + y3.l4 + const
##
## Estimate Std. Error t value Pr(>|t|)
## y1.l1 1.06019 0.07750 13.680 < 2e-16 ***
## y2.l1 0.08573 0.05769 1.486 0.138937
## y3.l1 -1.12743 0.26007 -4.335 2.35e-05 ***
## y1.l2 -0.40844 0.10959 -3.727 0.000255 ***
## y2.l2 0.14483 0.06411 2.259 0.024995 *
## y3.l2 1.43954 0.47438 3.035 0.002742 **
## y1.l3 0.34213 0.10881 3.144 0.001929 **
## y2.l3 -0.05812 0.06483 -0.896 0.371131
## y3.l3 -0.70204 0.47863 -1.467 0.144072
## y1.l4 -0.07427 0.07581 -0.980 0.328481
## y2.l4 -0.04398 0.06005 -0.732 0.464899
## y3.l4 0.35432 0.26123 1.356 0.176572
## const 0.22240 0.26021 0.855 0.393782
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.8318 on 192 degrees of freedom
## Multiple R-Squared: 0.9467, Adjusted R-squared: 0.9434
## F-statistic: 284.3 on 12 and 192 DF, p-value: < 2.2e-16
##
##
## Estimation results for equation y2:
## ===================================
## y2 = y1.l1 + y2.l1 + y3.l1 + y1.l2 + y2.l2 + y3.l2 + y1.l3 + y2.l3 + y3.l3 + y1.l4 + y2.l4 + y3.l4 + const
##
## Estimate Std. Error t value Pr(>|t|)
## y1.l1 0.153106 0.095926 1.596 0.11211
## y2.l1 0.496651 0.071412 6.955 5.4e-11 ***
## y3.l1 -0.864569 0.321911 -2.686 0.00787 **
## y1.l2 -0.056262 0.135653 -0.415 0.67879
## y2.l2 0.145957 0.079348 1.839 0.06739 .
## y3.l2 1.217548 0.587175 2.074 0.03945 *
## y1.l3 0.003771 0.134678 0.028 0.97769
## y2.l3 0.119329 0.080247 1.487 0.13865
## y3.l3 -0.309208 0.592437 -0.522 0.60232
## y1.l4 -0.113976 0.093842 -1.215 0.22603
## y2.l4 0.198238 0.074333 2.667 0.00831 **
## y3.l4 -0.143695 0.323339 -0.444 0.65725
## const 0.832060 0.322083 2.583 0.01053 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 1.03 on 192 degrees of freedom
## Multiple R-Squared: 0.823, Adjusted R-squared: 0.8119
## F-statistic: 74.39 on 12 and 192 DF, p-value: < 2.2e-16
##
##
## Estimation results for equation y3:
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## ===================================
## y3 = y1.l1 + y2.l1 + y3.l1 + y1.l2 + y2.l2 + y3.l2 + y1.l3 + y2.l3 + y3.l3 + y1.l4 + y2.l4 + y3.l4 + const
##
## Estimate Std. Error t value Pr(>|t|)
## y1.l1 0.004900 0.022778 0.215 0.830
## y2.l1 0.013957 0.016957 0.823 0.411
## y3.l1 1.599911 0.076441 20.930 < 2e-16 ***
## y1.l2 0.045633 0.032212 1.417 0.158
## y2.l2 -0.002500 0.018842 -0.133 0.895
## y3.l2 -0.576848 0.139430 -4.137 5.26e-05 ***
## y1.l3 -0.036193 0.031981 -1.132 0.259
## y2.l3 0.014368 0.019055 0.754 0.452
## y3.l3 -0.022801 0.140679 -0.162 0.871
## y1.l4 0.001066 0.022284 0.048 0.962
## y2.l4 -0.024645 0.017651 -1.396 0.164
## y3.l4 -0.035087 0.076780 -0.457 0.648
## const 0.117705 0.076481 1.539 0.125
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.2445 on 192 degrees of freedom
## Multiple R-Squared: 0.9786, Adjusted R-squared: 0.9773
## F-statistic: 732.7 on 12 and 192 DF, p-value: < 2.2e-16
##
##
##
## Covariance matrix of residuals:
## y1 y2 y3
## y1 0.69187 0.13554 -0.07901
## y2 0.13554 1.06001 -0.00749
## y3 -0.07901 -0.00749 0.05977
##
## Correlation matrix of residuals:
## y1 y2 y3
## y1 1.0000 0.15827 -0.38852
## y2 0.1583 1.00000 -0.02976
## y3 -0.3885 -0.02976 1.00000

The results above suggest that y1 is caused by lags 1 and 2 of y3. y2 is caused by lags 1 and 2 of y3. Finally,
y3 is only caused by its own past. This is kind of nice, and kind of atheoretically scary. . . It is like regressing
everyting on everything and picking the best model. . . Conclusion: don’t do this at home! To read more
about VAR, see here.

Cointegration and Error Correction Models

It is important to note that cross-correlation and Granger causality models work only for stationary data –
series that are not integrated. But what if our x and y are not stationary, what if they are integrated together
– that is co-integrated? The logic of cointegration is that series x sets a target level to which series y responds.
If the series are truly causally related, then a mismatch between the series must be subsequently corrected.

The logic is that co-integrated series move in tandem. Regressing one series on the other thus estimates the
movement, and leaves the residuals stationary. Finally, to ascertain causality x→ y, the stationary residuals
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get corrected in the future values of y.

There are two ways to estimate co-integration. The first approach of Engler and Granger uses a two-step
method, the second approach, called simply the ‘Error Correction Model’ (ECM) carries out both steps in
one equation.

Engel and Granger Two-Step method

1) Here we first estimate the simple regression between the two series to get its residuals z:

yt = β0 + β1xt + ut

2) In the second setp, we estimate the error correction in z

∆yt = α∆xt − πzt−1 + υt

Here note that ∆ stands for ‘change’ or ‘difference’, ∆yt = yt − yt−1. It is implemented with the diff()
function in R. Importantly, a negative coefficient π suggests an error correction process.

Error Correction Model

The Error Correction Model combines the two steps above into one equation:

∆yt = β0 + β1yt−1 + β2xt−1 + β3∆xt + et

Note that here yt−1 is the so-called lagged dependent variable (LDV). It just the past of y. The coefficient β3
(on ∆x) suggests Granger causality whereby change in x causes change in y. A negative coefficient β1 (on the
LDV) suggests error correction.

Let’s consider an example of co-integration, using data on interest rates.
D<-import("https://jan-rovny.squarespace.com/s/RATES.DTA")

Here D$tbond is the U.S. tresury long-term interest rate on government debt, and D$prime is prime market
(commercial banks) rate to lenders. The interest is to see whether the prime lending rate affect the U.S.
tresury tbond rate.

Let’s start with the Engel and Granger two-step method.
#1 Engel and Granger Two-Step Method

#Step 1)
m1<-lm(D$tbonds~D$prime) #simple regression
res<-m1$residuals #get the residuals (should be stationary, as the series correct for each other)
D<-cbind(D,res)

#check stationarity
adf.test(D$tbonds) #integrated (big p-value)

##
## Augmented Dickey-Fuller Test
##
## data: D$tbonds
## Dickey-Fuller = -1.3112, Lag order = 8, p-value = 0.8699
## alternative hypothesis: stationary
adf.test(D$prime) #integrated (big p-value)
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##
## Augmented Dickey-Fuller Test
##
## data: D$prime
## Dickey-Fuller = -2.7289, Lag order = 8, p-value = 0.2698
## alternative hypothesis: stationary
adf.test(D$res) #stationary! (small p-value)

##
## Augmented Dickey-Fuller Test
##
## data: D$res
## Dickey-Fuller = -3.963, Lag order = 8, p-value = 0.01085
## alternative hypothesis: stationary
#prepare data
library(dplyr)

##
## Attaching package: 'dplyr'

## The following object is masked from 'package:MASS':
##
## select

## The following objects are masked from 'package:data.table':
##
## between, first, last

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
D<-mutate(D, l.res = lag(res)) #create a lagged variable of res "l.res"
C<-D[-1,] #remove first row from D data (because we have a missing value on the lagged var)
C$d.tbonds<-diff(D$tbonds) #create differenced variable
C$d.prime<-diff(D$prime) #create differenced variable

#Step 2)
m2<-lm(d.tbonds~d.prime+l.res, data=C)
#here we want to see that the stationary errors (res) get corrected in the future values of y
summary(m2)

##
## Call:
## lm(formula = d.tbonds ~ d.prime + l.res, data = C)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.35077 -0.08889 -0.00272 0.08061 1.40567
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 0.004184 0.009200 0.455 0.6494
## d.prime 0.175137 0.020487 8.549 <2e-16 ***
## l.res -0.021660 0.008551 -2.533 0.0116 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2234 on 587 degrees of freedom
## Multiple R-squared: 0.1142, Adjusted R-squared: 0.1112
## F-statistic: 37.85 on 2 and 587 DF, p-value: 3.468e-16

In the model summary the coefficient on ∆x (d.prime) indicates causality of Granger type: ∆x→ ∆y The
negative coefficient on the lagged residuals (l.res) indicates error correction.

Next, let’s repeat the analysis with the ECM model.
#####
#2. One-Step ECM

#prepare data
l.tbonds<-transmute(D, l.tbonds = lag(tbonds)) #create lag of tbonds
l.tbonds<-l.tbonds[-1,] #remove first obs of lagged variable (as it is empty)
l.prime<-transmute(D, l.prime = lag(prime)) #create lag of prime
l.prime<-l.prime[-1,] #remove first obs of lagged variable (as it is empty)
C<-cbind(C,l.tbonds,l.prime) #combine with C frame

m3<-lm(d.tbonds~l.tbonds+d.prime+l.prime, data=C) #estimate model
summary(m3)

##
## Call:
## lm(formula = d.tbonds ~ l.tbonds + d.prime + l.prime, data = C)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.33888 -0.09159 -0.00545 0.07978 1.41389
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.037099 0.022712 1.633 0.1029
## l.tbonds -0.021631 0.008558 -2.528 0.0117 *
## d.prime 0.174536 0.020560 8.489 <2e-16 ***
## l.prime 0.014403 0.006613 2.178 0.0298 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2236 on 586 degrees of freedom
## Multiple R-squared: 0.1144, Adjusted R-squared: 0.1099
## F-statistic: 25.24 on 3 and 586 DF, p-value: 2.265e-15

In the summary above, note that l.tbonds is the lagged dependent variable (LDV). The LDV’s negative
effect indicates error correction. The significant coefficient on d.prime indicates Granger type causality:
∆x→ ∆y.

We can interpret the results of this model in the following way. Movements in the prime rate cause movements
in long tbond rates in two ways: First, changes in the prime flow through to changes in long (tbond) rates.
Second, the prime rates have an equilibrium relationship with long (tbond) rates which is corrected whenever
one or the other strays from the target levels.

16


	Introduction
	Prewhitening
	Identification
	Estimation
	Cross-correlation


	Granger Causality
	Multiple Granger Causality

	Cointegration and Error Correction Models
	Engel and Granger Two-Step method
	Error Correction Model



