Time After Time I Statistical Issues in Univariate Time-Series Data

Jan Rovny

Sciences Po, Paris

February 7, 2020

Time Time-series has a clear temporal ordering and is indexed by time

Sampling A time-series is obviously not a random sample but it is still the outcome of stochastic process

Population For time-series is the set of all possible realizations of the time series.

- Given the time component to time-series, the individual observations are not truly independent of each other, they are ordered in time.
- This effectively removes the assumption of independence, central to cross-sectional sampling.
- Consequently, there are two major concerns in time-series analysis

Stationarity

2 Dependence

• It is also called 'Persistence'

- Stationarity is needed to assess meaningful relationships between variables
- Trends (kind of non-stationary TS) are always correlated (piracy and global warming)

Strict Stationarity

A time-series is stationary if the joint distribution of a collection of observations is the same as that of a collection down the series.

- That is, mean, variance, and all higher moments (skewness, kurtosis, etc.) are independent on *t*.
- This is a very strict definition

• A weaker form of stationarity

Covariance Stationary Processes

A time-series is covariance stationary if (1) the first two moments (mean & variance) stay the same over time and (2) the covariance between y_t and y_{t+h} depends only on the distance between the two observations, not where in the series one started.

• There are no restrictions on how y_t and y_{t+1} are related to each other. They can be correlated.

Weak Dependence

A covariance stationary time-series is weakly dependent if the correlation between y_t and y_{t+h} goes to zero "sufficiently quickly" as h increases.

- Under weak dependence the covariance stationary series is asymptotically uncorrelated.
- Weak dependence plays the role of random sampling in time series analysis by ensuring that the law of large number and the central limit theorem hold

• Look at the time-series graph

R: ts(y), informs R that y is a time-series variable R: ts.plot(y), draws a line graph of y.

- Testing for a trend: Dicky-Fuller test for unit root (see below) R: adf.test(y) (in library tseries) Note that H_o is non-stationarity
- Linear trend is easily modeled as

$$y_t = \alpha_0 + \alpha_1 t + e_t, t = 1, 2, ...$$

if $\alpha_1 \neq 0$, then have a trend
Stata: $lm(y^t)$, then observe ttest on coefficient for t.

- May include trend term (t) in regression, say: y depends on observable x₁ and x₂, and unobserved trending factors: y_t = β₀ + β₁x_{t1} + β₂x_{t2} + β₃t + e
- Can 'detrend' the variables: regress y, x₁, and x₂ each on a trend term
 For example, x₁ = γ₀ + γ₁t R: m1<-lm(x1⁻t)
 Save the residuals, ÿ_t, x_{t1}, x_{t2}, R: x1.r<-m1\$residuals
 - Regress ÿ_t on x_{t1}, x_{t2} R: m2<-lm(y.r ~ x1.r + x2.r)

Removing trends 2

• Alternately (and most commonly), we can difference a time-series to remove a trend:

$$y_t = \alpha_0 + \alpha_1 t + e_t$$

- Here y_t dependes on t
- Differencing implies subtracting previous values of y from current y: yt − yt−1 yt − yt−1 = (α0 + α1t + et) − [α0 + α1(t − 1) + et−1] = α1 + et − et−1
- Notice that here y_t does not depend on t.
- Depending on time-series, might need to difference twice, or difference a log of time-series etc. (See Becketti 2013: 230)
- R time operators:
 - Difference: diff(x), if higher order is needed, specify diff(x, difference=2) for second difference etc.
 - Lag: lag(x) if longer lags are needed: lag(x, k = 2) etc., where k is the lag length.

Time-series Processes

æ

э

・ 日 ・ ・ ヨ ・ ・

- The key issue in time-series is how their values are related to each other
- The main concern is that past values are (somehow) reflected in current values (we are not free of our past)
- If this is the case, our observations are not independent of each other
- This then violates the OLS assumption of error independence $Cov(e_t, e_{t-j}) = 0, \forall j$

Typical time-series error aggregation processes:

- White Noise
- Oving Average
- Outoregressive
- Integration
 - Random Walk

1) White Noise

- The initial building block of a time-series
- White noise, e_t , is truly random error:

$$E(e_t) = 0$$
; $V(e_t) = \sigma^2$; $Cov(e_t, e_{t-j}) = 0, \forall j$

• White noise is our friend, because it is by definition random. We like seeing it.



2) Moving Average MA

• A combination of current and past white noise produces a Moving Average process:

$$y_t = e_t + \psi_1 e_{t-1}, t = 1, 2, ...,$$

- Here y_t is a weighted average of e_t and e_{t-1}, a moving average of order 1, MA(1)
- We could have an MA of higher orders, say 3:

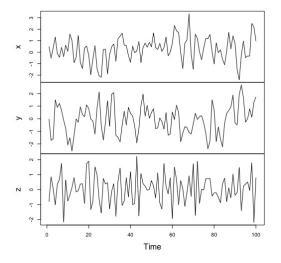
$$y_t = e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \psi_3 e_{t-3}$$

y_t is weakly dependent because once the observations are two

 MA(1) - or four - MA(3) - periods apart, they are
 independent.

2) Moving Average MA

Moving Average Processes



x:
$$\psi = 0.5$$
, y: $\psi = 0.9$, z: $\psi = -0.5$

• A more common time-series process is autoregression:

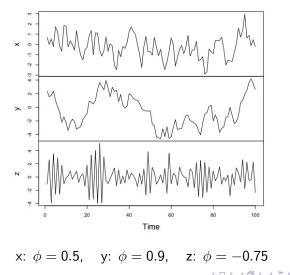
$$y_t = e_t + \phi_1 y_{t-1}, t = 1, 2, ...,$$

- Here y_t is a discounted function of its past value: AR(1)
- A higher order autoregression, say AR(3), is also possible:

$$y_t = e_t + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \phi_3 y_{t-3}$$

- As long as |\phi_i| < 1 (the stability condition), the influence of *e*_{t-j} on y_t diminishes as j increases, and y_t is weakly dependent.
- Under the stability condition, AR is a very reasonable model of history, as the impact on past events decays exponentially with time.

3) Auto-Regression AR



990

ŀ

- Integrated time-series accumulate history there is no decay, every update has an infinite impact.
- When we have an AR process and $|\phi_i| = 1$ (unit root), we have a particular integrated series, a drift called random walk

- A random walk is a time series where the current observation is the previous observation with a random step up or down.
- It is thus the previous observation plus white noise

$$x_t = x_{t-1} + w_t$$

where w_t is a random value = white noise

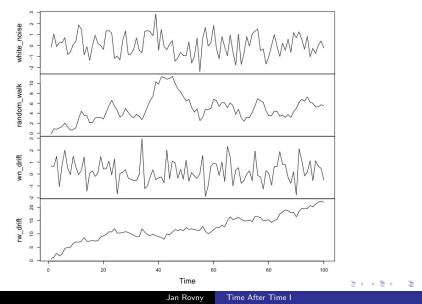
• A random walk can have a so-called drift, which adds a constant α

$$x_t = \alpha + x_{t-1} + w_t$$

- The difference of random walk is white noise
- The difference of random walk with a drift is white noise with a drift

White Noise and Random Walk

White Noise and Random Walk



Modelling a time-series

æ

- To model a time-series means to estimate its MA and AR parameters (ψ_i and φ_i)
- We do this by fitting so-called ARMA(p, q) models, where p refers to the AR order, and q to the MA order of the time-series.
- In case of non-stationary or integrated series, we should estimate an ARIMA(p, d, q) model, where d indicates the order of differencing.
- Box and Jenkins (1970) suggest the following procedure:
 - Identification: Determine the order of the ARMA model. Is it ARMA(1,1) or ARMA(1,2) etc.?
 - **2** Estimation: Estimate the parameters ψ_i and ϕ_i
 - Oiagnostics: Test for the adequacy of the model. If we are successful, we should be left with white noise.

- This is a scarily subjective matter...
- Look at the autocorrelation function and partial autocorrelation
- R: acf(y) and pacf(y, lag = #)
 - acf shows the autocorrelations going back # of lags
 - pacf shows the *j*th partial autocorrelation between y_t and y_{t-j} after controlling for the correlations between y_t and the previous lags.

Tips in time-series identification (Becketti 2013: 242)

Process	Autocorrelation Function	Partial Autocorrelation function
Non-stationary	AC do not die out	
	they remain large	
	or diminish linearly	
Stationary	After first few lags	
	AC die out (collapse to 0)	
	in exponential decay or	
	dampened oscillation	
AR(p)	AC die out	PAC cut off after the first <i>p</i> lags
MA(q)	AC cut off after the first q lags	PAC die out
ARMA(p,q)	AC die out	PAC die out
	after the first $q - p$ lags	after the first $p - q$ lags

SQA

- If you know the order of AR and MA and have a stationary series, this is the easy part.
- R arima(y, order=c(#p, #d, #q))
- R will fit the values for all the specified AR and MA parameters using MLE.

- Our aim in modeling a time-series is to arrive at truly random error white noise.
- If we fit our time series correctly, we should be able to observe no structure in the AC and PAC functions.
- To get a general overview, use the white noise test on the residuals from the ARIMA model:
 R: model<-arima(y, order=c(#p, #d, #q))
 whitenoise.test(model\$residuals)
- H_0 is white noise, so want to fail to reject H_0 (see higher values on the p statistic)

Do example on U.S. GDP in Stata

DQC