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Time-Series 1

Time Time-series has a clear temporal ordering and is
indexed by time

Sampling A time-series is obviously not a random sample but it
is still the outcome of stochastic process

Population For time-series is the set of all possible realizations of
the time series.
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Time-Series 2

Given the time component to time-series, the individual
observations are not truly independent of each other, they are
ordered in time.

This effectively removes the assumption of independence,
central to cross-sectional sampling.

Consequently, there are two major concerns in time-series
analysis

1 Stationarity

2 Dependence

It is also called ‘Persistence’
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Stationarity 1

Stationarity is needed to assess meaningful relationships
between variables

Trends (kind of non-stationary TS) are always correlated
(piracy and global warming)

Strict Stationarity

A time-series is stationary if the joint distribution of a collection of
observations is the same as that of a collection down the series.

That is, mean, variance, and all higher moments (skewness,
kurtosis, etc.) are independent on t.

This is a very strict definition
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Stationarity 2

A weaker form of stationarity

Covariance Stationary Processes

A time-series is covariance stationary if (1) the first two moments
(mean & variance) stay the same over time and (2) the covariance
between yt and yt+h depends only on the distance between the two
observations, not where in the series one started.

There are no restrictions on how yt and yt+1 are related to
each other. They can be correlated.
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Dependence

Weak Dependence

A covariance stationary time-series is weakly dependent if the
correlation between yt and yt+h goes to zero “sufficiently quickly”
as h increases.

Under weak dependence the covariance stationary series is
asymptotically uncorrelated.

Weak dependence plays the role of random sampling in time
series analysis by ensuring that the law of large number and
the central limit theorem hold
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Looking at trends

Look at the time-series graph
R: ts(y), informs R that y is a time-series variable
R: ts.plot(y), draws a line graph of y .

Testing for a trend: Dicky-Fuller test for unit root (see below)

R: adf.test(y) (in library tseries)
Note that Ho is non-stationarity

Linear trend is easily modeled as
yt = α0 + α1t + et , t = 1, 2, ...

if α1 6= 0, then have a trend
Stata: lm(y~t), then observe ttest on coefficient for t.
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Removing trends 1

May include trend term (t) in regression,
say: y depends on observable x1 and x2,
and unobserved trending factors:
yt = β0 + β1xt1 + β2xt2 + β3t + e

Can ‘detrend’ the variables:
regress y , x1, and x2 each on a trend term

For example, x1 = γ0 + γ1t
R: m1<-lm(x1~t)

Save the residuals, ÿt , ẍt1, ẍt2,
R: x1.r<-m1$residuals

Regress ÿt on ẍt1, ẍt2
R: m2<-lm(y.r ~ x1.r + x2.r)
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Removing trends 2

Alternately (and most commonly), we can difference a
time-series to remove a trend:

yt = α0 + α1t + et

Here yt dependes on t

Differencing implies subtracting previous values of y from
current y : yt − yt−1

yt − yt−1 = (α0 + α1t + et)− [α0 + α1(t − 1) + et−1] =
α1 + et − et−1

Notice that here yt does not depend on t.

Depending on time-series, might need to difference twice, or
difference a log of time-series etc. (See Becketti 2013: 230)

R time operators:
Difference: diff(x), if higher order is needed, specify
diff(x, difference=2) for second difference etc.
Lag: lag(x) if longer lags are needed: lag(x, k = 2) etc.,
where k is the lag length.
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Time-series Processes
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Time-series processes

The key issue in time-series is how their values are related to
each other

The main concern is that past values are (somehow) reflected
in current values (we are not free of our past)

If this is the case, our observations are not independent of
each other

This then violates the OLS assumption of error independence
Cov(et , et−j) = 0, ∀j
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Time-series processes

Typical time-series error aggregation processes:

1 White Noise

2 Moving Average

3 Autoregressive

4 Integration

Random Walk
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1) White Noise

The initial building block of a time-series
White noise, et , is truly random error:
E (et) = 0;V (et) = σ2;Cov(et , et−j) = 0, ∀j
White noise is our friend, because it is by definition random.
We like seeing it.
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2) Moving Average MA

A combination of current and past white noise produces a
Moving Average process:

yt = et + ψ1et−1, t = 1, 2, ...,

Here yt is a weighted average of et and et−1, a moving
average of order 1, MA(1)

We could have an MA of higher orders, say 3:

yt = et + ψ1et−1 + ψ2et−2 + ψ3et−3

yt is weakly dependent because once the observations are two
– MA(1) – or four – MA(3) – periods apart, they are
independent.
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2) Moving Average MA

x: ψ = 0.5, y: ψ = 0.9, z: ψ = −0.5
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3) Autoregression AR

A more common time-series process is autoregression:

yt = et + φ1yt−1, t = 1, 2, ...,

Here yt is a discounted function of its past value: AR(1)

A higher order autoregression, say AR(3), is also possible:

yt = et + φ1yt−1 + φ2yt−2 + φ3yt−3

As long as |φi | < 1 (the stability condition), the influence of
et−j on yt diminishes as j increases, and yt is weakly
dependent.

Under the stability condition, AR is a very reasonable model
of history, as the impact on past events decays exponentially
with time.
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3) Auto-Regression AR

x: φ = 0.5, y: φ = 0.9, z: φ = −0.75
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4) Integration I

Integrated time-series accumulate history – there is no decay,
every update has an infinite impact.

When we have an AR process and |φi | = 1 (unit root), we
have a particular integrated series, a drift called random walk
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Random Walk

A random walk is a time series where the current observation
is the previous observation with a random step up or down.

It is thus the previous observation plus white noise

xt = xt−1 + wt

where wt is a random value = white noise

A random walk can have a so-called drift, which adds a
constant α

xt = α + xt−1 + wt

The difference of random walk is white noise

The difference of random walk with a drift is white noise with
a drift
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White Noise and Random Walk
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Modelling a time-series
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Modeling a time-series

To model a time-series means to estimate its MA and AR
parameters (ψi and φi )

We do this by fitting so-called ARMA(p, q) models,
where p refers to the AR order, and q to the MA order of the time-series.

In case of non-stationary or integrated series, we should
estimate an ARIMA(p, d , q) model,
where d indicates the order of differencing.

Box and Jenkins (1970) suggest the following procedure:
1 Identification: Determine the order of the ARMA model. Is it

ARMA(1,1) or ARMA(1,2) etc.?
2 Estimation: Estimate the parameters ψi and φi
3 Diagnostics: Test for the adequacy of the model. If we are

successful, we should be left with white noise.
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Identification of a time-series 1

This is a scarily subjective matter...

Look at the autocorrelation function and partial
autocorrelation

R: acf(y) and pacf(y, lag = #)

acf shows the autocorrelations going back # of lags
pacf shows the jth partial autocorrelation between yt and yt−j

after controlling for the correlations between yt and the
previous lags.
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Identification of a time-series 2

Tips in time-series identification (Becketti 2013: 242)
Process Autocorrelation Function Partial Autocorrelation function

Non-stationary AC do not die out
they remain large
or diminish linearly

Stationary After first few lags
AC die out (collapse to 0)
in exponential decay or
dampened oscillation

AR(p) AC die out PAC cut off after the first p lags
MA(q) AC cut off after the first q lags PAC die out
ARMA(p, q) AC die out PAC die out

after the first q − p lags after the first p − q lags
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Estimation of time-series

If you know the order of AR and MA and have a stationary
series, this is the easy part.

R arima(y, order=c(#p, #d, #q))

R will fit the values for all the specified AR and MA
parameters using MLE.
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Diagnostics

Our aim in modeling a time-series is to arrive at truly random
error – white noise.

If we fit our time series correctly, we should be able to observe
no structure in the AC and PAC functions.

To get a general overview, use the white noise test on the
residuals from the ARIMA model:
R: model<-arima(y, order=c(#p, #d, #q))

whitenoise.test(model$residuals)

H0 is white noise, so want to fail to reject H0 (see higher
values on the p statistic)
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Modeling a real time-series

Do example on U.S. GDP in Stata
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