Time Series Cross-Section

Jan Rovny

Sciences Po, Paris

Jan Rovny Time Series Cross-Section

990

э

- parallel observation of different units (e.g. countries) over time
- time-ordered observations across different units
- expect theoretical unit homogeneity comparable causal processes across units

Time Series Cross-Section

particular data structure of N units and T time periods. Total observations = N * T

Unit	Time
1	1
1	2
1	3
1	
1	Т
2	1
2	2
2	3
2	
2	Т
Ν	1
Ν	2
Ν	3
Ν	
Ν	Т

• • = • • = •

SQA

- unit effects: each unit has some idiosyncrasies that are not modeled \rightarrow omitted variable bias
- autocorrelation: temporal error aggregation processes we know from Time Series 1 (ARIMA) → biased s.e.
- heteroscedasticity: given the differences in units, likely unequal variances between them: σ_i² ≠ σ_j² for units i and j (e.g. spending variation across U.S. and Eritrea) → biased s.e.
- errors may be correlated (not-independent) across:
 - spatially proximate units (they are similar or interacting)
 - units at the same time (common exogenous event at time t)
 - \rightarrow units not independent of one anther \rightarrow biased s.e.

What is the most serious problem?

- historical, contextual idiosyncrasies of units
- unit effects suggest that 'all else is not equal' or *ceteris non* paribus

Test whether unit variable explains variation in the DV: anova<-aov(DV~unit, data=D) summary(anova) if we observe low p-value (< 0.05), it show significant unit effects

TSCS equation: $y_{it} = \beta_0 + \beta_1 x_{it} + \beta_2 z_i + a_i + u_{it}$

 x_{it} are predictors that vary over time and across units z_i are predictors that vary across units only. They are time-invariant!

The overall residual, normally ϵ_{it} , is split into two parts:

- *a_i* is unobserved variance of the DV that varies across units, but not over time = unit effects
- *u_{it}* is error that varies over time and across units

Deal with unit effects is by subtracting the mean values of the variables across countries over time. Start with basic TSCS: $y_{it} = \beta_0 + \beta_1 x_{it} + \beta_2 z_i + a_i + u_{it}$ (1)

Taking the mean of this equation over time produces this: $\bar{y}_{it} = \beta_1 \bar{x}_{it} + \beta_2 z_i + a_i + \bar{u}_{it}$ (2) (the over-time mean of z_i is z_i , and of a_i is a_i – they are time-invariant)

Subtract equation (2) from equation (1), we get the *time-demeaned equation*:

$$y_{it} - \bar{y}_i = \beta_1(x_{it} - \bar{x}_i) + u_{it} - \bar{u}_i$$
 (3)

Equation (3) is the *fixed effects estimator*, also known as *within estimator*. It estimates over-time effects *within* units.

Equivalent alternative: $y_{it} = \beta_0 + \beta_1 x_{it} + \gamma C_i + u_{it}$ (4)

 C_i are N dummy variables = 1 for unit *i*, otherwise 0.

We are modeling the unit effects as 'country dummies.' This is the *dummy variable estimator*.

It produces the same results as the fixed effects estimator.

- inefficiency: too many means or dummies estimated
- brutality: takes "general ignorance" (ϵ_{it}) and turns it into "specific ignorance" (a_i) . We atheoreticly remove 'context'.
- what happened to z_i ? Time-invariant variables cannot be estimated!
- fixed effects cannot estimate level effects, explaining the actual levels reached by the dependent variable

Random effects, like in multi-level models, assume time observations as nested within units. Unit effects a_i seen as ignorance which is illogical to model.

Random effects thus proceed from: $y_{it} = \beta_0 + \beta_1 x_{it} + \beta_2 z_i + \epsilon_{it}$ (5) $\epsilon_{it} = a_i + u_{it}$, thus including unit effects. This is problematic... Random effects equation: $y_{it} = \beta_0 + \beta_1 x_{it} + \beta_2 z_i + \epsilon_{it}$ (5)

moving unit effects into the residual introduces two problems:

- 1) autocorrelation: a_i is in the error at each time point t.
- 2) if a_i is correlated with predictors x_{it} → omitted variable bias.
- Fix: transform the error to account for serial autocorrelation.
 - 1) use the knowledge of the size of error variance caused by unit effects *a_i*.
 - 2) we wave our hands, and ... assume that Cov(a_i, x_{it}) = 0. This is a very, very, very strong assumption...

Random effects equation: $y_{it} = \beta_0 + \beta_1 x_{it} + \beta_2 z_i + \epsilon_{it}$ (5)

Next, define a transformation coefficient λ : $\lambda = 1 - \sqrt{\frac{\sigma_u^2}{\sigma_u^2 + T\sigma_a^2}}$

The transformation of equation (5) is then: $y_{it} - \lambda \bar{y}_i = \beta_0 (1 - \lambda) + \beta_1 (x_{it} - \lambda \bar{x}_i) + \beta_2 (z_i - \lambda z_i) + (\epsilon_{it} - \lambda \bar{\epsilon}_i)$ (6)

The random effects estimator

- the *quasi-demeaned* equation (6) is similar to the *demeaned* equation (3), but the means are multiplied by λ
- the transformation subtracts a fraction of the time average,
- the fraction depends on σ_u , σ_a and T.
- this means that we are using our knowledge of the within error variance σ_u^2 (estimated with fixed effects) and the total variance σ^2 (estimated with OLS).
- time-invariant predictors z_i are now possible.
- when $\lambda = 1$, the RE model is identical to an FE model.
- when $\lambda = 0$ the RE model is identical to OLS estimation.
- the bigger the variance of the unobserved effect, the closer RE is to FE, the smaller the variance of the unobserved effect, the closer RE is to OLS.

- Beck and Katz (1995): TSCS with OLS, but correct s.e. to make them robust to contemporaneous error correlation and autocorrelation
- PCSE have the same coefficients as OLS, but different s.e.
- the problem is that they deal with error issues only, esp. contemporaneous error correlation
- we can do this by modeling specific time shocks (e.g. dummy for Covid year)
- does not resolve unit effects!

Lagged Dependent Variable (LDV)

• To fix big problems, Beck and Katz propose the use of lagged dependent variable (LDV) in OLS model

•
$$y_{it} = \beta_0 + \alpha y_{t-1} + \beta_1 x_{it} + \beta_2 z_i + \epsilon_{it}$$
 (7)

- Here y_{t-1} is the lagged dependent variable
- LDV models history of y, doing two things in one:
- 1) models temporal dynamics (autoregression)
- 2) as it models history in y, it captures unit effects (past levels of y)
- But the control for unit effects is as strong as the dynamics in y. If α is very small (say < 0.5), then control for unit effects is also small.
- But if dynamics are strong and α is large, then LDV explains a lot of the variance, and our x variables have little leverage...

- Need to consider temporal dynamics across each panel
- Key concern is trending, as all trends predict all trends
- Check data for stationarity with Dickey Fuller test

naa

- best solution is differencing
- it models not the levels, but the differences between values in the series
- need to consider level of integration I(1), then use first difference

difference model looks like this:

$$\Delta y = \beta_0 + \beta_1 \Delta x \mathbf{1}_{it} + \beta_2 \Delta x \mathbf{2}_{it} + \dots + \epsilon_{it}$$

Where Δy is the first difference in y: $\Delta y = y_t - y_{t-1}$ and so on.