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Time Series Cross-Section

parallel observation of different units (e.g. countries) over
time

time-ordered observations across different units

expect theoretical unit homogeneity – comparable causal
processes across units
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Time Series Cross-Section

particular data structure of N units and T time periods. Total
observations = N ∗ T

Unit Time

1 1
1 2
1 3
1 ...
1 T
2 1
2 2
2 3
2 ...
2 T
... ...
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N 3
N ...
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Problems in TSCS

unit effects: each unit has some idiosyncrasies that are not
modeled → omitted variable bias

autocorrelation: temporal error aggregation processes we
know from Time Series 1 (ARIMA) → biased s.e.

heteroscedasticity: given the differences in units, likely
unequal variances between them: σ2i 6= σ2j for units i and j
(e.g. spending variation across U.S. and Eritrea) → biased s.e.

errors may be correlated (not-independent) across:

spatially proximate units (they are similar or interacting)
units at the same time (common exogenous event at time t)

→ units not independent of one anther → biased s.e.

What is the most serious problem?
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Unit Effects

historical, contextual idiosyncrasies of units

unit effects suggest that ‘all else is not equal’ or ceteris non
paribus

Test whether unit variable explains variation in the DV:
anova<-aov(DV~unit, data=D)

summary(anova) if we observe low p-value (< 0.05), it show
significant unit effects
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TSCS set up

TSCS equation:
yit = β0 + β1xit + β2zi + ai + uit

xit are predictors that vary over time and across units
zi are predictors that vary across units only. They are
time-invariant!

The overall residual, normally εit , is split into two parts:

ai is unobserved variance of the DV that varies across units,
but not over time = unit effects

uit is error that varies over time and across units
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Solution 1) Fixed effects – time-demeaned

Deal with unit effects is by subtracting the mean values of the
variables across countries over time. Start with basic TSCS:
yit = β0 + β1xit + β2zi + ai + uit (1)

Taking the mean of this equation over time produces this:
ȳit = β1x̄it + β2zi + ai + ūit (2)
(the over-time mean of zi is zi , and of ai is ai – they are time-invariant)

Subtract equation (2) from equation (1), we get the
time-demeaned equation:
yit − ȳi = β1(xit − x̄i ) + uit − ūi (3)

Equation (3) is the fixed effects estimator, also known as within
estimator. It estimates over-time effects within units.
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Solution 1) Fixed effects – dummy variables

Equivalent alternative:
yit = β0 + β1xit + γCi + uit (4)

Ci are N dummy variables = 1 for unit i , otherwise 0.

We are modeling the unit effects as ‘country dummies.’ This is the
dummy variable estimator.

It produces the same results as the fixed effects estimator.
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Fixed effects: problems

inefficiency: too many means or dummies estimated

brutality: takes “general ignorance” (εit) and turns it into
“specific ignorance” (ai ). We atheoreticly remove ‘context’.

what happened to zi? Time-invariant variables cannot be
estimated!

fixed effects cannot estimate level effects, explaining the
actual levels reached by the dependent variable
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Solution 2) Random effects

Random effects, like in multi-level models, assume time
observations as nested within units.
Unit effects ai seen as ignorance which is illogical to model.

Random effects thus proceed from:
yit = β0 + β1xit + β2zi + εit (5)
εit = ai + uit , thus including unit effects.
This is problematic...
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Solution 2) Random effects

Random effects equation:
yit = β0 + β1xit + β2zi + εit (5)

moving unit effects into the residual introduces two problems:

1) autocorrelation: ai is in the error at each time point t.

2) if ai is correlated with predictors xit → omitted variable
bias.

Fix: transform the error to account for serial autocorrelation.

1) use the knowledge of the size of error variance caused by
unit effects ai .

2) we wave our hands, and ... assume that Cov(ai , xit) = 0.
This is a very, very, very strong assumption...
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The random effects estimator

Random effects equation:
yit = β0 + β1xit + β2zi + εit (5)

Next, define a transformation coefficient λ:

λ = 1−
√

σ2
u

σ2
u+Tσ2

a

The transformation of equation (5) is then:
yit −λȳi = β0(1−λ) +β1(xit −λx̄i ) +β2(zi −λzi ) + (εit −λε̄i ) (6)
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The random effects estimator

the quasi-demeaned equation (6) is similar to the demeaned
equation (3), but the means are multiplied by λ

the transformation subtracts a fraction of the time average,

the fraction depends on σu, σa and T.

this means that we are using our knowledge of the within
error variance σ2u (estimated with fixed effects) and the total
variance σ2 (estimated with OLS).

time-invariant predictors zi are now possible.

when λ = 1, the RE model is identical to an FE model.

when λ = 0 the RE model is identical to OLS estimation.

the bigger the variance of the unobserved effect, the closer RE
is to FE, the smaller the variance of the unobserved effect, the
closer RE is to OLS.
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Panel Corrected Standard Errors (PCSE)

Beck and Katz (1995): TSCS with OLS, but correct s.e. to
make them robust to contemporaneous error correlation and
autocorrelation

PCSE have the same coefficients as OLS, but different s.e.

the problem is that they deal with error issues only, esp.
contemporaneous error correlation

we can do this by modeling specific time shocks (e.g. dummy
for Covid year)

does not resolve unit effects!
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Lagged Dependent Variable (LDV)

To fix big problems, Beck and Katz propose the use of lagged
dependent variable (LDV) in OLS model

yit = β0 + αyt−1 + β1xit + β2zi + εit (7)

Here yt−1 is the lagged dependent variable

LDV models history of y , doing two things in one:

1) models temporal dynamics (autoregression)

2) as it models history in y , it captures unit effects (past
levels of y)

But the control for unit effects is as strong as the dynamics in
y . If α is very small (say < 0.5), then control for unit effects
is also small.

But if dynamics are strong and α is large, then LDV explains
a lot of the variance, and our x variables have little leverage...
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Integrated time series

Need to consider temporal dynamics across each panel

Key concern is trending, as all trends predict all trends

Check data for stationarity with Dickey Fuller test
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Estimating integrated time series

best solution is differencing

it models not the levels, but the differences between values in
the series

need to consider level of integration I(1), then use first
difference

difference model looks like this:

∆y = β0 + β1∆x1it + β2∆x2it + ...+ εit

Where ∆y is the first difference in y : ∆y = yt − yt−1 and so on.
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