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Regression Logic

I Regression equation:

yi = β0 + β1xi + ei

ŷi = β̂0 + β̂1xi

I e captures all the reasons why the prediction ŷi deviates from
the observed value yi . This includes:

I Measurement error
I Omitted predictors
I Idiosyncratic sources of behavior

I Error can thus be written as:

ei = yi − β̂0 − β̂1xi
= yi − (β̂0 + β̂1xi )

= yi − ŷi
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Regression Estimation

I To estimate regression coefficients we minimize:

S =
n∑

i=1

(yi − β0 − β1xi )2

=
n∑

i=1

e2i

I We minimize the squared residuals

I This means we find a regression line that is closest to the
observed values on yi
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Regression Assumption #1

I I. The most important assumption

I 1. Model is correctly specified

I Formally: Mean Independence: E (εi ) = 0, which means that
the mean value of ε does not depend on any of the predictors.

I Model includes all relevant predictors in the correct functional
form (squares, interactions etc.).

I If this does not hold, there is omitted variable bias, the OLS
estimator is biased and inconsistent = WRONG

I Specification error is a central problem for which there is no
statistical solution.

I We must turn to theory!
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Assumptions about Errors

I 2. Linearity: y is a linear function of the xs.
I Violation of 1. and 2. causes point estimate bias!

I 3. Normality: εi ∼ N(0, σ2) We assume that the error is
normally distributed (around the regression line).

I 3. is important for inference, allows us to use t-tests.

I 4. Homoscedasticity: Var(εi ) = σ2: variance of errors is
constant.

I 5. Nonautocorrelation: Cov(εi , εj) = 0 (i 6= j) , errors are
independent. (Problem in time-series data.)

I 4. and 5. do not effect point estimates, only determine the
standard errors.
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Interpretations

I We are interested in the effects of our predictors x
I These are summarized by βx coefficients, which have a clear

interpretation:
I for every 1 unit change in x , y responds by βx units

I We want to make sure that the effect of x is assessed
independently of some other predictor z

I Consequently we specify a multiple regression equation:

yi = β0 + β1x1i + β2x2i + ...+ βkxki + ei

I Here, the individual βs become partial regression coefficients,
independent of all effects of the other xs in the model
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Predicted values

I To assess the specific effects of some x , a useful method is
the calculation and visualization of predicted values ŷ .

I To make this meaningful, we specify the values of the other
xs, effectively holding them constant, while varying the x of
interest, and calculating ŷ for every iteration.

I Example:
I Predict left-right placement as a function of: gender, age,

education, income, religious affiliation, climate views
m<-lm(lr~female+age+as.factor(educ)+inc+mus+clim_deny,

data=D)
I Assess the effect of climate views as other variables are held

constant.
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Predicted values exercise

I To asses predicted values
I Enter values of βs
I Set values of predictors (xs), keeping all but one constant.
I Solve for l̂r

l̂r = β0 + β2 ∗ female + β3 ∗ age + β4 ∗ educ1 + β5 ∗ educ2

+β6 ∗ educ3 + β7 ∗ inc + β8 ∗mus

+β9 ∗ clim deny

I β̂s estimated in R:
(Intercept) female age educ1 educ2 educ3 inc mus clim_deny

4.37 0.09 0.005 -0.08 -0.119 -0.45 0.06 -0.93 0.43

I x values set by us

[See demonstration in R]
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Matrix Algebra
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Vectors and Matrixes

I We have so far written our equations in normal algebraic
notation

I But really, our dependent variable yi is a vector of length n

I Our predictors x1, x2, x3...xk form a matrix of n rows and k
collumns

I Our estimates β0, β1...βk are a vector of length k + 1 (k
predictors + intercept)

I We can thus note them, and operate with them accordingly

I To do this, we use matrix algebra notation and operations
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Matrix notation

I Note that vectors and matrixes are in bold, while individual
values are not

I Vectors are smaller case letters (y , e), while matrixes are
capitalized (X )

y =


y1
y2
y3
...
yn

X =


1 x11 x21 . . . xk1
1 x12 x22 . . . xk2
...

...
. . .

...
1 x1n x2n . . . xkn

β =


β0
β1
β2
...
βk



e =


e1
e2
e3
...
en


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Matrix operations - addition, subtraction

I Note two matrixes A and B:

A =

 1 2 3
4 5 6
7 8 9

B =

 2 2 2
2 2 2
2 2 2


I We can add and subtract:

A + B =

 3 4 5
6 7 8
9 10 11

 A− B =

 −1 0 1
2 3 4
5 6 7


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Matrix operations - transpose

I We can transpose a matrix:

A =

 1 2 3
4 5 6
7 8 9


A′ =

 1 4 7
2 5 8
3 6 9


I Here A’ (read “A prime”) is a transpose of A

I Transpose is in a sense a ‘two-dimensional’ rotation of the
matrix
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Matrix operations - multiplication

I Scalar multiplication:

4 ∗ A = 4

 1 2 3
4 5 6
7 8 9

 =

 4 8 12
16 20 24
28 32 36



I Matrix multiplication is not straight forward

I It combines both multiplying and adding(
a b
c d

)
∗
(

e f
g h

)
=

(
ae + bg af + bh
ce + dg cf + dh

)
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Matrix operations - identity matrix

I Identity matrix is a special kind of matrix which is the size of
nxn

I contains 1s in the diagonal positions

I 0s in the off-diagonal positions

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


I Multiplying by an identity matrix leads to no change A ∗ I = A
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Matrix operations - inversion

I Inversion of a matrix C is an operation by which we look for
an inverse matrix C−1, so that: CC−1 = I

I Not all matrixes are inversible. We call these singular.

I While A and B are singular, C is inversible:

C =

 1 2 4
2 4 6
4 6 8

C−1 =

 1 −2 1
2 2 −0.5
1 −0.5 0


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OLS in Matrix Notation
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OLS estimation in matrix notation

I From the basic regression equation, we know that:

ei = yi − β̂0 − β̂1xi

I In matrix notation, we simplify this to:

e = y − X β̂

I Here, X and y are known, and β̂ is to be estimated so as to
minimize e
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OLS estimation in matrix notation

I In effect, we minimize the sum of squared residuals (RSS),
which is e′e

(e1, e2, . . . , en)1xn


e1
e2
...
en


nx1

= (e1∗e1+e2∗e2+. . .+en+en)1x1

I e′e can be written using the equation above as:

e′e = (y − X β̂)′(y − X β̂)
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OLS estimation in matrix notation

I Now, we need to minimize e′e:

e′e = (y − X β̂)′(y − X β̂)

I This yields so-called ‘normal equations’

X ′X β̂ = X ′y

I Or, if X is inversible (non-singular):

β̂ = (X ′X )−1X ′y

I In R: beta<-solve(t(X) %*% X) %*% t(X) %*% y
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OLS estimation in matrix notation

I Under what conditions can X ′X be inverted?

1. N ≥ k + 1, this is usually met easily
2. the columns of X must be linearly independent (no

multicollinearity)
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