## Regression

An upgraded review

Jan Rovny

## December 19, 2019

## Regression Logic

- Regression equation:

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i} \\
\hat{y_{i}}=\hat{\beta_{0}}+\hat{\beta_{1}} x_{i}
\end{gathered}
$$

- e captures all the reasons why the prediction $\hat{y}_{i}$ deviates from the observed value $y_{i}$. This includes:
- Measurement error
- Omitted predictors
- Idiosyncratic sources of behavior
- Error can thus be written as:

$$
\begin{aligned}
e_{i} & =y_{i}-\hat{\beta_{0}}-\hat{\beta_{1}} x_{i} \\
& =y_{i}-\left(\hat{\beta_{0}}+\hat{\beta}_{1} x_{i}\right) \\
& =y_{i}-\hat{y_{i}}
\end{aligned}
$$

## Regression Estimation

- To estimate regression coefficients we minimize:

$$
\begin{aligned}
S & =\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2} \\
& =\sum_{i=1}^{n} e_{i}^{2}
\end{aligned}
$$

- We minimize the squared residuals
- This means we find a regression line that is closest to the observed values on $y_{i}$


## Regression Assumption \#1

- I. The most important assumption
- 1. Model is correctly specified
- Formally: Mean Independence: $E\left(\epsilon_{i}\right)=0$, which means that the mean value of $\epsilon$ does not depend on any of the predictors.
- Model includes all relevant predictors in the correct functional form (squares, interactions etc.).
- If this does not hold, there is omitted variable bias, the OLS estimator is biased and inconsistent $=$ WRONG
- Specification error is a central problem for which there is no statistical solution.
- We must turn to theory!


## Assumptions about Errors

- 2. Linearity: $y$ is a linear function of the $x$ s.
- Violation of 1. and 2. causes point estimate bias!
- 3. Normality: $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ We assume that the error is normally distributed (around the regression line).
- 3. is important for inference, allows us to use t-tests.
- 4. Homoscedasticity: $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$ : variance of errors is constant.
- 5. Nonautocorrelation: $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0(i \neq j)$, errors are independent. (Problem in time-series data.)
- 4. and 5. do not effect point estimates, only determine the standard errors.


## Interpretations

- We are interested in the effects of our predictors $x$
- These are summarized by $\beta_{x}$ coefficients, which have a clear interpretation:
- for every 1 unit change in $x, y$ responds by $\beta_{x}$ units
- We want to make sure that the effect of $x$ is assessed independently of some other predictor $z$
- Consequently we specify a multiple regression equation:

$$
y_{i}=\beta_{0}+\beta_{1} \times 1_{i}+\beta_{2} \times 2_{i}+\ldots+\beta_{k} \times k_{i}+e_{i}
$$

- Here, the individual $\beta$ s become partial regression coefficients, independent of all effects of the other $x$ s in the model


## Predicted values

- To assess the specific effects of some $x$, a useful method is the calculation and visualization of predicted values $\hat{y}$.
- To make this meaningful, we specify the values of the other $x s$, effectively holding them constant, while varying the $x$ of interest, and calculating $\hat{y}$ for every iteration.
- Example:
- Predict left-right placement as a function of: gender, age, education, income, religious affiliation, climate views

```
m<-lm(lr~}\mathrm{ female+age+as.factor(educ)+inc+mus+clim_deny,
data=D)
```

- Assess the effect of climate views as other variables are held constant.


## Predicted values exercise

- To asses predicted values
- Enter values of $\beta$ s
- Set values of predictors (xs), keeping all but one constant.
- Solve for $\hat{\mathrm{I}}$

$$
\begin{aligned}
\hat{r}= & \beta_{0}+\beta_{2} * \text { female }+\beta_{3} * \text { age }+\beta_{4} * \text { educ } 1+\beta_{5} * \text { educ } 2 \\
& +\beta_{6} * \text { educ } 3+\beta_{7} * \text { inc }+\beta_{8} * \text { mus } \\
& +\beta_{9} * \text { clim_deny }
\end{aligned}
$$

- $\hat{\beta}$ s estimated in R :

| (Intercept) | female | age | educ1 | educ2 | educ3 | inc | mus | clim_deny |
| :--- | :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- |
| 4.37 | 0.09 | 0.005 | -0.08 | -0.119 | -0.45 | 0.06 | -0.93 | 0.43 |

- $x$ values set by us
[See demonstration in R]


## Matrix Algebra

## Vectors and Matrixes

- We have so far written our equations in normal algebraic notation
- But really, our dependent variable $y_{i}$ is a vector of length $n$
- Our predictors $x_{1}, x_{2}, x_{3} \ldots x_{k}$ form a matrix of $n$ rows and $k$ collumns
- Our estimates $\beta_{0}, \beta_{1} \ldots \beta_{k}$ are a vector of length $k+1$ ( $k$ predictors + intercept)
- We can thus note them, and operate with them accordingly
- To do this, we use matrix algebra notation and operations


## Matrix notation

- Note that vectors and matrixes are in bold, while individual values are not
- Vectors are smaller case letters $(\boldsymbol{y}, \boldsymbol{e})$, while matrixes are capitalized ( $\boldsymbol{X}$ )

$$
\begin{aligned}
& \mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n}
\end{array}\right) \mathbf{X}=\left(\begin{array}{ccccc}
1 & x_{11} & x_{21} & \ldots & x_{k 1} \\
1 & x_{12} & x_{22} & \ldots & x_{k 2} \\
\vdots & \vdots & \ddots & \vdots & \\
1 & x_{1 n} & x_{2 n} & \ldots & x_{k n}
\end{array}\right) \boldsymbol{\beta}=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k}
\end{array}\right) \\
& \mathbf{e}=\left(\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3} \\
\vdots \\
e_{n}
\end{array}\right)
\end{aligned}
$$

## Matrix operations - addition, subtraction

- Note two matrixes $\mathbf{A}$ and $\mathbf{B}$ :

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \mathbf{B}=\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right)
$$

- We can add and subtract:

$$
\mathbf{A}+\mathbf{B}=\left(\begin{array}{ccc}
3 & 4 & 5 \\
6 & 7 & 8 \\
9 & 10 & 11
\end{array}\right) \quad \mathbf{A}-\mathbf{B}=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
2 & 3 & 4 \\
5 & 6 & 7
\end{array}\right)
$$

## Matrix operations - transpose

- We can transpose a matrix:
$\begin{aligned} \mathbf{A} & =\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right) \\ \mathbf{A}^{\prime} & =\left(\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right)\end{aligned}$
- Here $\mathbf{A}^{\prime}$ (read "A prime") is a transpose of $\mathbf{A}$
- Transpose is in a sense a 'two-dimensional' rotation of the matrix


## Matrix operations - multiplication

- Scalar multiplication:

$$
4 * \mathbf{A}=4\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)=\left(\begin{array}{ccc}
4 & 8 & 12 \\
16 & 20 & 24 \\
28 & 32 & 36
\end{array}\right)
$$

- Matrix multiplication is not straight forward
- It combines both multiplying and adding

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) *\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right)
$$

## Matrix operations - identity matrix

- Identity matrix is a special kind of matrix which is the size of $n \times n$
- contains 1 s in the diagonal positions
- Os in the off-diagonal positions
$\mathbf{I}=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right)$
- Multiplying by an identity matrix leads to no change $\mathbf{A} * \mathbf{I}=\mathbf{A}$


## Matrix operations - inversion

- Inversion of a matrix $\mathbf{C}$ is an operation by which we look for an inverse matrix $\mathbf{C}^{-1}$, so that: $\mathbf{C C}^{-1}=\mathbf{I}$
- Not all matrixes are inversible. We call these singular.
- While $\mathbf{A}$ and $\mathbf{B}$ are singular, $\mathbf{C}$ is inversible:

$$
\mathbf{C}=\left(\begin{array}{lll}
1 & 2 & 4 \\
2 & 4 & 6 \\
4 & 6 & 8
\end{array}\right) \mathbf{C}^{-1}=\left(\begin{array}{ccc}
1 & -2 & 1 \\
2 & 2 & -0.5 \\
1 & -0.5 & 0
\end{array}\right)
$$

## OLS in Matrix Notation

## OLS estimation in matrix notation

- From the basic regression equation, we know that:

$$
e_{i}=y_{i}-\hat{\beta_{0}}-\hat{\beta_{1}} x_{i}
$$

- In matrix notation, we simplify this to:

$$
e=y-X \hat{\boldsymbol{\beta}}
$$

- Here, $\boldsymbol{X}$ and $\boldsymbol{y}$ are known, and $\hat{\boldsymbol{\beta}}$ is to be estimated so as to minimize $\boldsymbol{e}$


## OLS estimation in matrix notation

- In effect, we minimize the sum of squared residuals (RSS), which is $\boldsymbol{e}^{\prime} \boldsymbol{e}$

$$
\left(e_{1}, e_{2}, \ldots, e_{n}\right)_{1 \times n}\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right)_{n \times 1}=\left(e_{1} * e_{1}+e_{2} * e_{2}+\ldots+e_{n}+e_{n}\right)_{1 \times 1}
$$

- $\boldsymbol{e}^{\prime} \boldsymbol{e}$ can be written using the equation above as:

$$
\boldsymbol{e}^{\prime} \boldsymbol{e}=(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})
$$

## OLS estimation in matrix notation

- Now, we need to minimize $\boldsymbol{e}^{\prime} \boldsymbol{e}$ :

$$
\boldsymbol{e}^{\prime} \boldsymbol{e}=(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})
$$

- This yields so-called 'normal equations'

$$
X^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{X}^{\prime} \boldsymbol{y}
$$

- Or, if $\boldsymbol{X}$ is inversible (non-singular):

$$
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
$$

- In R: beta<-solve(t(X) \% \% \% X) \% \% \% t (X) \% $\%$ \% y


## OLS estimation in matrix notation

- Under what conditions can $\boldsymbol{X}^{\prime} \boldsymbol{X}$ be inverted?

1. $N \geq k+1$, this is usually met easily
2. the columns of $\boldsymbol{X}$ must be linearly independent (no multicollinearity)
