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Regression Logic

» Regression equation:
yi = Po+ Pixi + &

Vi = Bo+ Pxi
» e captures all the reasons why the prediction y; deviates from
the observed value y;. This includes:
» Measurement error
» Omitted predictors
» Idiosyncratic sources of behavior

» Error can thus be written as:

e = yi—fo—Pixi
= yi— (Bo+ B1xi)
= Yyi—Yi
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Regression Estimation

» To estimate regression coefficients we minimize:

n

S = > (vi—Bo—Pixi)

» We minimize the squared residuals

» This means we find a regression line that is closest to the
observed values on y;

Jan Rovny Regression



Regression Assumption #1

» |. The most important assumption

v

1. Model is correctly specified

» Formally: Mean Independence: E(e;) = 0, which means that
the mean value of € does not depend on any of the predictors.

» Model includes all relevant predictors in the correct functional
form (squares, interactions etc.).

» If this does not hold, there is omitted variable bias, the OLS
estimator is biased and inconsistent = WRONG

» Specification error is a central problem for which there is no
statistical solution.

» We must turn to theory!
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Assumptions about Errors

2. Linearity: y is a linear function of the xs.
» Violation of 1. and 2. causes point estimate bias!

v

v

3. Normality: €; ~ N(0,02) We assume that the error is
normally distributed (around the regression line).
» 3. is important for inference, allows us to use t-tests.

4. Homoscedasticity: Var(e;) = o2: variance of errors is

constant.
» 5. Nonautocorrelation: Cov(ej,€j) =0 (i # j) , errors are
independent. (Problem in time-series data.)

» 4. and 5. do not effect point estimates, only determine the
standard errors.

v
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Interpretations

» We are interested in the effects of our predictors x

» These are summarized by 3, coefficients, which have a clear
interpretation:

» for every 1 unit change in x, y responds by 3 units

» We want to make sure that the effect of x is assessed
independently of some other predictor z

» Consequently we specify a multiple regression equation:
Yi = Po + Bixli + Bax2; + ... + Brxki + €

» Here, the individual #s become partial regression coefficients,
independent of all effects of the other xs in the model
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Predicted values

» To assess the specific effects of some x, a useful method is
the calculation and visualization of predicted values y.

» To make this meaningful, we specify the values of the other
xs, effectively holding them constant, while varying the x of
interest, and calculating y for every iteration.

> Example:

» Predict left-right placement as a function of: gender, age,
education, income, religious affiliation, climate views
m<-1lm(lr~female+age+as.factor (educ)+inc+mus+clim_deny,

data=D)

» Assess the effect of climate views as other variables are held
constant.

Jan Rovny Regression



Predicted values exercise

» To asses predicted values
» Enter values of (s

» Set values of predictors (xs), keeping all but one constant.
» Solve for Ir

Ir = Bo+ B * female + B3 « age + f4 * educl + B * educ?
+ 86 * educ3 + 7 x inc + g * mus
+089 * clim_deny

> Bs estimated in R:

(Intercept) female age educl educ2 educ3 inc

mus clim_deny
4.37 0.09 0.005 -0.08 -0.119

-0.45 0.06 -0.93 0.43

> x values set by us

[See demonstration in R]
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Matrix Algebra




Vectors and Matrixes

» We have so far written our equations in normal algebraic
notation

» But really, our dependent variable y; is a vector of length n

» Qur predictors xj, x2, x3...xx form a matrix of n rows and k
collumns

» Our estimates [y, 81...0k are a vector of length k + 1 (k
predictors + intercept)

» We can thus note them, and operate with them accordingly

» To do this, we use matrix algebra notation and operations
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Matrix notation

» Note that vectors and matrixes are in bold, while individual
values are not

» Vectors are smaller case letters (y, e), while matrixes are
capitalized (X)

- 1 X11 Xo1 ... Xkl IBO
y2 1 B
X12 X222 ... Xk2
y=| v |x=| _ B=| P
) 1 x X e X .

Vi 1n 2n kn Bk
€1
€2

e = e3
€n
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Matrix operations - addition, subtraction

» Note two matrixes A and B:
1 2 3 2 2 2
A=| 45 6 |B=| 2 2 2
7 8 9 2 2 2
» We can add and subtract:
3 4 5 -1 01
A+B=| 6 7 8 A—-B= 2 3 4
9 10 11 5 6 7
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Matrix operations - transpose

» We can transpose a matrix:

1 2 3

A=1| 4 5 6
7 8 9

1 4 7

A= 2 5 8
369

» Here A’ (read "A prime") is a transpose of A

» Transpose is in a sense a ‘two-dimensional’ rotation of the
matrix
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Matrix operations - multiplication

> Scalar multiplication:

1 2 3 4 8 12
4xA=4 4 5 6 | =| 16 20 24
7 8 9 28 32 36

» Matrix multiplication is not straight forward

> It combines both multiplying and adding

a b L[ e f\ [ ae+bg af + bh
c d g h) \ cet+dg cf+dh
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Matrix operations - identity matrix

» Identity matrix is a special kind of matrix which is the size of
nxn
» contains 1s in the diagonal positions

> Os in the off-diagonal positions

10 ... 0
01 ... 0
00 ... 1

» Multiplying by an identity matrix leads to no change Ax1 = A
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Matrix operations - inversion

> Inversion of a matrix C is an operation by which we look for
an inverse matrix C~1 so that: CC~ ! =1

» Not all matrixes are inversible. We call these singular.

» While A and B are singular, C is inversible:

12 4 1 -2 1
C=|2 46 |Cl=[2 2 -05
4 6 8 1 -05 0
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OLS estimation in matrix notation

> From the basic regression equation, we know that:
€ =Yi— féo - lei
> In matrix notation, we simplify this to:
e=y— X,@

» Here, X and y are known, and ,é is to be estimated so as to
minimize e
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OLS estimation in matrix notation

> In effect, we minimize the sum of squared residuals (RSS),
which is e’e

(e1,€,...,€n)1xn : = (e1xe1t+exxer+...+epten)ix
€n

nx1

» e’e can be written using the equation above as:

ee=(y - XB)(y — XB)
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OLS estimation in matrix notation

» Now, we need to minimize e’e:

ee=(y - XB)(y — XB)

v

This yields so-called ‘normal equations’

X'XB=X'y

v

Or, if X is inversible (non-singular):

B=(X'X)"'X'y

» In R: beta<-solve(t(X) %*% X) %% t(X) %*%h vy
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OLS estimation in matrix notation

» Under what conditions can X’X be inverted?

1. N> k+1, this is usually met easily
2. the columns of X must be linearly independent (no
multicollinearity)

Jan Rovny Regression



