Binary and Nominal Dependent Variables Applying MLE

Jan Rovny

February 5, 2023

Introduction

- Political scientists are often interested in binary or nominal outcomes:
- Did a respondent vote or not?
- Is a respondent employed or not?
- Was there war between country A and B in 1967?
- Is a respondent below the poverty line or not?
- Which party did a respondent vote for?
- These outcomes cannot be operationalized as continuous variables and thus cannot be estimated using OLS.
- We must turn to MLE

Binary outcomes and OLS

Did a respondent vote in the last election?

- We could attempt to estimate this using OLS
- $\operatorname{Pr}(y=1 \mid \mathrm{x})=\beta_{0}+\mathrm{x} \boldsymbol{\beta}$
- But that that would violate OLS assumptions in a number of ways:

Binary outcomes and OLS

Did a respondent vote in the last election?

- We could attempt to estimate this using OLS
- $\operatorname{Pr}(y=1 \mid \mathrm{x})=\beta_{0}+\mathrm{x} \boldsymbol{\beta}$
- But that that would violate OLS assumptions in a number of ways:
- It would be heteroscedastic

Binary outcomes and OLS

Did a respondent vote in the last election?

- We could attempt to estimate this using OLS
- $\operatorname{Pr}(y=1 \mid \mathrm{x})=\beta_{0}+\mathrm{x} \boldsymbol{\beta}$
- But that that would violate OLS assumptions in a number of ways:
- It would be heteroscedastic
- The probabilities would not be bounded by 0 and 1

Binary outcomes and OLS

Did a respondent vote in the last election?

- We could attempt to estimate this using OLS
- $\operatorname{Pr}(y=1 \mid \mathrm{x})=\beta_{0}+\mathrm{x} \boldsymbol{\beta}$
- But that that would violate OLS assumptions in a number of ways:
- It would be heteroscedastic
- The probabilities would not be bounded by 0 and 1
- It would predict a linear function (no diminishing marginal effects, poor prediction of middle cases)

OLS prediction of binary outcome

An alternative: Logit/Probit

- Imagine the binary outcome y_{i} as a manifestation of an unobserved continuous latent variable $y_{i} *$
- $y_{i} *$ can be understood as propensity to choose $y=1$

The Logic of Logit/Probit mathematically

$$
y_{i}= \begin{cases}1 & \text { if } y_{i} *>\tau \\ 0 & \text { if } y_{i} * \leq \tau\end{cases}
$$

- $y_{i} *$ can be understood as a continuous function of \boldsymbol{x} plus ϵ.
- Thus: $y *=\boldsymbol{x} \boldsymbol{\beta}+\epsilon$
(this is a normal linear function)
- if $\tau=0$, then $y=1$ when $y *>0$.
- We can write that:

$$
\operatorname{Pr}(y=1 \mid \boldsymbol{x})=\operatorname{Pr}(\boldsymbol{x} \boldsymbol{\beta}+\epsilon>0 \mid \boldsymbol{x})
$$

- If we subtract $\boldsymbol{x} \boldsymbol{\beta}$ from both sides of the inequality, we get:

$$
\operatorname{Pr}(y=1 \mid \boldsymbol{x})=\operatorname{Pr}(\epsilon>-\boldsymbol{x} \boldsymbol{\beta} \mid \boldsymbol{x})
$$

- Given the symmetry of the distributions $(p>-\boldsymbol{x} \boldsymbol{\beta}=p \leq \boldsymbol{x} \boldsymbol{\beta})$,

Consequently:

$$
\operatorname{Pr}(y=1 \mid \boldsymbol{x})=\operatorname{Pr}(\epsilon \leq \boldsymbol{x} \boldsymbol{\beta} \mid \boldsymbol{x})
$$

The Logic of Logit/Probit mathematically

What error distribution should we assume?
(What is the distribution of the error curves in Panel A above?)

- Logit $\epsilon \sim L\left(0, \pi^{2} / 3\right)$
- Probit $\epsilon \sim N(0,1)$, then

$$
\operatorname{Pr}\left[y_{i}=1\right]=\operatorname{Pr}\left[\epsilon>-\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{\beta}\right]=\operatorname{Pr}\left[\epsilon<\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{\beta}\right]^{1}=F\left(\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{\beta}\right)
$$

where F is either standard logistic CDF (logit) or standard normal CDF (probit)
${ }^{1}$ This is because both logit and normal distributions are symmetrical. See Long p. 45

Estimation

- Estimation of logit and probit requires MLE
- Assume that we have a sample of N independent observations
- We have $y=1$ and $y=0$, where 1 s occur with probability π and 0 s with probability $1-\pi$
- The likelihood function is:

$$
\begin{align*}
\mathcal{L} & =\prod_{y_{i}=1} \pi \prod_{y_{i}=0}(1-\pi) \tag{1}\\
\mathcal{L} & =\prod_{y_{i}=1} F\left(\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{\beta}\right) \prod_{y_{i}=0}\left[1-F\left(\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{\beta}\right)\right] \tag{2}\\
\mathcal{L} & =\prod_{i=1}^{N}\left[F\left(\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{\beta}\right)\right]^{y_{i}}\left[1-F\left(\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{\beta}\right)\right]^{1-y_{i}} \tag{3}
\end{align*}
$$

- where F is either the standard logistic CDF (logit) or the standard normal CDF (probit)

Logit

- The logit function refers to log odds. That is, the logged odds of an outcome are:

$$
\operatorname{In}\left(\frac{\operatorname{Pr}(y=1)}{\operatorname{Pr}(y=0)}\right)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\epsilon
$$

- This can be written as:

$$
\begin{gathered}
\operatorname{Pr}\left(y=1 \mid x_{1}, x_{2}, \ldots x_{k}\right)=\frac{e^{\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}\right)}}{1+e^{\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}\right)}}= \\
=\frac{1}{1+\exp \left(-\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{\beta}\right)}
\end{gathered}
$$

Probit

- An alternative to logit is probit

$$
\operatorname{Pr}\left(y=1 \mid x_{1}, x_{2}, \ldots x_{k}\right)=\Phi\left(x_{1}, x_{2}, \ldots x_{k}\right)
$$

- here $\Phi(\cdot)$ is the cumulative distribution function (cdf) of the normal distribution, so

$$
\operatorname{Pr}\left(y=1 \mid x_{1}, x_{2}, \ldots x_{k}\right)=G(x \boldsymbol{\beta})
$$

- where

$$
G(\times \boldsymbol{\beta})=\int_{-\infty}^{\times \boldsymbol{\beta}} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\nu^{2}}{2}\right) d \nu
$$

PDFs and CDFs

Panel B: cdf's for logistic and normal distributions

Logit and Probit

- Logit v. Probit:
- The differences between logit and probit are minior
- The main difference is in their computation, where logit is easier.
- But this has been erased with computer power.
- Logit and Probit have desirable properties:
- Have constant error variance (by definition) logit $\pi^{2} / 3$, probit 1
- Their predictions are bounded between 0 and 1
- Follow an S-shape

Logit and Probit

Example

- The dependent variable inlf is coded 1 or 0 for whether a woman is in the labour force or not. (Data: Mroz.dta)
- The predictors are:

Variable	Description	Mean
nwifeinc	non-wife income	20.13
educ	education	12.29
exper	work experience in years	10.63
expersq	squared work experience	178.04
age	age in years	42.54
kidslt6	number of children <6 years old	0.24
kidsge6	number of children ≥ 6 years old	1.35

ln R

```
logit<-glm(inlf ~nwifeinc+educ+exper+expersq+age+kidslt6+kidsge6, data=D, family = binomial(link=logit))
summary(logit)
Call:
glm(formula = inlf ~ nwifeinc + educ + exper + expersq + age +
    kidslt6 + kidsge6, family = binomial(link = logit), data = D)
Deviance Residuals:
    Min 1Q Median 3Q Max
-2.1770 -0.9063 0.4473 0.8561 2.4032
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.425452 0.860365 0.495 0.62095
nwifeinc -0.021345 0.008421 -2.535 0.01126 *
educ 0.221170 0.043439 5.091 3.55e-07 ***
exper 0.205870 0.032057 6.422 1.34e-10 ***
expersq -0.003154 0.001016 -3.104 0.00191 **
age -0.088024 0.014573 -6.040 1.54e-09 ***
kidslt6 -1.443354 0.203583 -7.090 1.34e-12 ***
kidsge6 0.060112 0.074789
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 803.53 on 745 degrees of freedom
AIC: 819.53
Number of Fisher Scoring iterations: 4
```


Interpreting logit coefficients

- Cannot interpret $\beta \mathbf{s}$ in the same way as in OLS! They are not linear!
- However, the logit - the log odds - are written linearly:

$$
\operatorname{In}\left(\frac{\operatorname{Pr}(y=1)}{\operatorname{Pr}(y=0)}\right)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\epsilon
$$

- We can thus interpret this as:
"for a unit change in x_{k}, the logit changes by β_{k}, all else constant"
- The problem is that we do not have an intuitive sense of what the logit is...

Odds ratios

- We can, however, exponentiate both sides of the equation:

$$
\begin{gathered}
\exp \left(\ln \left(\frac{\operatorname{Pr}(y=1)}{\operatorname{Pr}(y=0)}\right)\right)=\exp \left(\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\epsilon\right) \\
\left(\frac{\operatorname{Pr}(y=1)}{\operatorname{Pr}(y=0)}\right)=\exp \left(\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\epsilon\right)
\end{gathered}
$$

- Now we can read this as: "a unit change in x_{k} changes the odds by a factor of $\exp \left(\beta_{k}\right)$ "
- Odds are centered around 1 , values <1 suggests decreasing effect
- values >1 suggest increasing effect

Odds ratios

- To assess the effect of a variable in terms of odds ratios as x changes by δ units:

$$
\exp \left(\beta_{k} * \delta\right)-1
$$

- Multiply by 100 to get percentage change:

$$
100\left(\exp \left(\beta_{k} * \delta\right)-1\right)
$$

- This will tell you the "percentage change in the likelihood of $y=1$ as x_{k} changes by δ units"

Odds ratios - example

From the coefficients of the model above:

nwifeinc	educ	exper	expersq	age	kidslt6	kidsge6
-0.021	0.221	0.205	-0.003	-0.088	-1.443	0.060

- For each additional small child (<6 years), the likelihood of a woman working decreases by 76 percent.

$$
100(\exp (-1.443 * 1)-1)=-76.378
$$

- For additional 5 years of education, the likelihood of a woman working increases by 202 percent - she is twice as likely to work.

$$
100(\exp (0.221 * 5)-1)=201.922
$$

Predicted probabilities

- The best way to assess effects in logit/probit models is to calculate predicted probabilities:

$$
\begin{gathered}
\operatorname{Pr}(y=1 \mid x)=\frac{\exp (x \beta)}{1+\exp (x \beta)}= \\
=\frac{\exp \left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}\right)}
\end{gathered}
$$

- We generally want to assess the effects of key variables, such as x_{1}
- To keep the ceteris paribus condition, we maintain other (control) variables at some constant value
- For continuous variables, most usually, the mean.
- For categorical variables, usually the mode.

Predicted probabilities example

- From the data above, assess the probability that a woman is in the labour force:
- as a function of her education,
- and of the number of small children she has,
- while other variables are held constant.
- This means:
- setting all other variables at some constant values,
- while varying education and number of small children from their min to max,
- and then calculating the predicted probabilities (using the equation above).
[see demonstration in R]

Goodness of Fit

- Logit and Probit obviously cannot estimate an R^{2}
- One alternative is any of a number of pseudo R^{2} measures, mostly based on the log-likelihood: $1-\frac{L_{u r}}{L_{r}}$
- McFadden's R^{2} in R: pR2() $\{\mathrm{pscl}\}$
- A better alternative: share of observations correctly predicted
- Each value has a predicted probability of scoring 1
- Assign each observation with $p p \geq 0.5$ to 1 , otherwise 0
- Compare the predicted ones and zeros to the actual reported outcomes.
- Best to report both the percentage of negatives and positives correctly predicted
[see demonstration in R]
For more information on model fit, see here

