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Logit and Probit Binary Outcomes

Introduction

I Political scientists are often interested in binary or nominal
outcomes:
I Did a respondent vote or not?
I Is a respondent employed or not?
I Was there war between country A and B in 1967?
I Is a respondent below the poverty line or not?
I Which party did a respondent vote for?

I These outcomes cannot be operationalized as continuous
variables and thus cannot be estimated using OLS.

I We must turn to MLE
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Binary outcomes and OLS

Did a respondent vote in the last election?
I We could attempt to estimate this using OLS

I Pr(y = 1|x) = β0 + xβ

I But that that would violate OLS assumptions in a number of
ways:

I It would be heteroscedastic
I The probabilities would not be bounded by 0 and 1
I It would predict a linear function (no diminishing marginal

effects, poor prediction of middle cases)
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OLS prediction of binary outcome
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An alternative: Logit/Probit

I Imagine the binary outcome yi as a manifestation of an unobserved continuous
latent variable yi∗

I yi∗ can be understood as propensity to choose y = 1
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The Logic of Logit/Probit mathematically

yi =

{
1 if yi∗ > τ
0 if yi∗ ≤ τ

I yi∗ can be understood as a
continuous function of x plus ε.

I Thus: y∗ = xβ + ε
(this is a normal linear function)

I if τ = 0, then y = 1 when y∗ > 0.

I We can write that:
Pr(y = 1|x) = Pr(xβ + ε > 0|x)

I If we subtract xβ from both sides of the inequality, we get:
Pr(y = 1|x) = Pr(ε > −xβ|x)

I Given the symmetry of the distributions (p > −xβ = p ≤ xβ),
Consequently:

Pr(y = 1|x) = Pr(ε ≤ xβ|x)
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The Logic of Logit/Probit mathematically

What error distribution should we assume?
(What is the distribution of the error curves in Panel A above?)

I Logit ε ∼ L(0, π2/3)
I Probit ε ∼ N(0, 1), then

Pr [yi = 1] = Pr [ε > −xiβ] = Pr [ε < xiβ]
1 = F (xiβ)

I where F is either standard logistic CDF (logit) or standard normal CDF (probit)
1
This is because both logit and normal distributions are symmetrical. See Long p.45
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Estimation

I Estimation of logit and probit requires MLE
I Assume that we have a sample of N independent observations
I We have y = 1 and y = 0, where 1s occur with probability π

and 0s with probability 1− π
I The likelihood function is:

L =
∏
yi=1

π
∏
yi=0

(1− π) (1)

L =
∏
yi=1

F (xiβ)
∏
yi=0

[1− F (xiβ)] (2)

L =
N∏
i=1

[F (xiβ)]yi [1− F (xiβ)]1−yi (3)

I where F is either the standard logistic CDF (logit) or the
standard normal CDF (probit)
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Logit

I The logit function refers to log odds. That is, the logged odds
of an outcome are:

ln

(
Pr(y = 1)

Pr(y = 0)

)
= β0 + β1x1 + ...+ βkxk + ε

I This can be written as:

Pr(y = 1|x1, x2, ...xk) =
e(β0+β1x1+β2x2+...+βkxk )

1 + e(β0+β1x1+β2x2+...+βkxk )
=

=
1

1 + exp(−xiβ)
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Probit

I An alternative to logit is probit

Pr(y = 1|x1, x2, ...xk) = Φ(x1, x2, ...xk)

I here Φ(·) is the cumulative distribution function (cdf) of the
normal distribution, so

Pr(y = 1|x1, x2, ...xk) = G (xβ)

I where

G (xβ) =

∫ xβ

−∞

1√
2π

exp(−ν
2

2
)dν
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PDFs and CDFs
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Logit and Probit

I Logit v. Probit:
I The differences between logit and probit are minior
I The main difference is in their computation, where logit is

easier.
I But this has been erased with computer power.

I Logit and Probit have desirable properties:
I Have constant error variance (by definition) logit π2/3, probit 1
I Their predictions are bounded between 0 and 1
I Follow an S-shape
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Logit and Probit
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Logit and Probit Binary Outcomes

Example

I The dependent variable inlf is coded 1 or 0 for whether a
woman is in the labour force or not. (Data: Mroz.dta)

I The predictors are:

Variable Description Mean

nwifeinc non-wife income 20.13
educ education 12.29
exper work experience in years 10.63
expersq squared work experience 178.04
age age in years 42.54
kidslt6 number of children < 6 years old 0.24
kidsge6 number of children ≥ 6 years old 1.35
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In R

logit<-glm(inlf~nwifeinc+educ+exper+expersq+age+kidslt6+kidsge6, data=D, family = binomial(link=logit))

summary(logit)

Call:

glm(formula = inlf ~ nwifeinc + educ + exper + expersq + age +

kidslt6 + kidsge6, family = binomial(link = logit), data = D)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.1770 -0.9063 0.4473 0.8561 2.4032

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.425452 0.860365 0.495 0.62095

nwifeinc -0.021345 0.008421 -2.535 0.01126 *

educ 0.221170 0.043439 5.091 3.55e-07 ***

exper 0.205870 0.032057 6.422 1.34e-10 ***

expersq -0.003154 0.001016 -3.104 0.00191 **

age -0.088024 0.014573 -6.040 1.54e-09 ***

kidslt6 -1.443354 0.203583 -7.090 1.34e-12 ***

kidsge6 0.060112 0.074789 0.804 0.42154

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1029.75 on 752 degrees of freedom

Residual deviance: 803.53 on 745 degrees of freedom

AIC: 819.53

Number of Fisher Scoring iterations: 4

I Note the numerical convergence, LR χ2 instead of F, Pseudo R2

I The magnitude of βs is difficult to interpret because the effect of
predictors is not constant
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Interpreting logit coefficients

I Cannot interpret βs in the same way as in OLS! They are not
linear!

I However, the logit – the log odds – are written linearly:

ln

(
Pr(y = 1)

Pr(y = 0)

)
= β0 + β1x1 + ...+ βkxk + ε

I We can thus interpret this as:
“for a unit change in xk , the logit changes by βk , all else
constant”

I The problem is that we do not have an intuitive sense of what
the logit is...
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Odds ratios

I We can, however, exponentiate both sides of the equation:

exp(ln

(
Pr(y = 1)

Pr(y = 0)

)
) = exp(β0 + β1x1 + ...+ βkxk + ε)

(
Pr(y = 1)

Pr(y = 0)

)
= exp(β0 + β1x1 + ...+ βkxk + ε)

I Now we can read this as: “a unit change in xk changes the
odds by a factor of exp(βk)”

I Odds are centered around 1, values < 1 suggests decreasing
effect

I values > 1 suggest increasing effect
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Odds ratios

I To assess the effect of a variable in terms of odds ratios as x
changes by δ units:

exp(βk ∗ δ)− 1

I Multiply by 100 to get percentage change:

100(exp(βk ∗ δ)− 1)

I This will tell you the “percentage change in the likelihood of
y = 1 as xk changes by δ units”
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Odds ratios – example

From the coefficients of the model above:

nwifeinc educ exper expersq age kidslt6 kidsge6

-0.021 0.221 0.205 -0.003 -0.088 -1.443 0.060

I For each additional small child (< 6 years), the likelihood of a
woman working decreases by 76 percent.

100(exp(−1.443 ∗ 1)− 1) = −76.378

I For additional 5 years of education, the likelihood of a woman
working increases by 202 percent – she is twice as likely to
work.

100(exp(0.221 ∗ 5)− 1) = 201.922
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Predicted probabilities

I The best way to assess effects in logit/probit models is to
calculate predicted probabilities:

Pr(y = 1|x) =
exp(xβ)

1 + exp(xβ)
=

=
exp(β0 + β1x1 + β2x2 + ...+ βkxk)

1 + exp(β0 + β1x1 + β2x2 + ...+ βkxk)

I We generally want to assess the effects of key variables, such
as x1

I To keep the ceteris paribus condition, we maintain other
(control) variables at some constant value
I For continuous variables, most usually, the mean.
I For categorical variables, usually the mode.
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Predicted probabilities example

I From the data above, assess the probability that a woman is
in the labour force:
I as a function of her education,
I and of the number of small children she has,
I while other variables are held constant.

I This means:
I setting all other variables at some constant values,
I while varying education and number of small children from

their min to max,
I and then calculating the predicted probabilities (using the

equation above).

[see demonstration in R]
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Goodness of Fit

I Logit and Probit obviously cannot estimate an R2

I One alternative is any of a number of pseudo R2 measures,
mostly based on the log-likelihood: 1− Lur

Lr
I McFadden’s R2 in R: pR2() {pscl}

I A better alternative: share of observations correctly predicted
I Each value has a predicted probability of scoring 1
I Assign each observation with pp ≥ 0.5 to 1, otherwise 0
I Compare the predicted ones and zeros to the actual reported

outcomes.
I Best to report both the percentage of negatives and positives

correctly predicted

[see demonstration in R]
For more information on model fit, see here
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