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What is Maximum Likelihood Estimation (MLE)

I MLE is a unified method of statistical estimation.
I Through one logic it provides a framework for estimation and

hypothesis testing.

I MLE is theoretically grounded in that it requires an explicit
model of the data generation process.

I We must explicitly assume the distribution which gave rise to
our dependent variable.

I MLE is extremely versatile.
I It allows estimation of simple linear models, as well as complex

models which are non-linear in the parameters.
I We can estimate models with binary, ordinal or nominal

dependent variables, as well as many other classes of models,
using MLE.

I MLE has desirable asymptotic properties.

I Consequently, many different classes of MLE models are
widely used in social sciences.
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The History of MLE

I MLE statistical theory was developed by a British geneticist
and statistician Robert A. Fisher between 1912 and 1922.

I Its application, however, had to wait until the 1980s and
1990s, for one simple reason: most ML estimates cannot be
found analytically. They are too complicated to calculate.

I MLE requires taking the first derivative of the log-likelihood
function, which is easy in linear models, but becomes
analytically intractable with complex functions.

I Solutions have to be found through numerical optimization
methods, which essentially require sufficient computing power.

I MLE thus become widely used only once our computers
become powerful enough to solve the models.
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Probability Theory

I MLE is rooted in probability theory, but in reverse.
I In probability theory:

I We know the parameter value, and we try to predict particular
data.

I For example, we know that the probability of getting heads on
a flip of a fair coin is π = 0.5. We can then ask ourselves how
many heads we are likely to observe in 10 flips.

I The answer is of course 5, but if you try it right now, you
might get another number.

I 5 heads in 10 flips of a fair coin is simply the most likely
outcome.
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Maximum Likelihood Logic

I In statistical estimation, we are in the reverse situation:
I We know the data, but we do not know the parameter value

(the estimate) that produced it

I The MLE question thus stands: given my data, what is the
value of the parameter that most likely produced the
data?

I What value of π is most likely behind my observing 5 heads
in 10 flips of a coin?

I The answer is of course π = 0.5, but again, this is only the
most likely value.

I Given random error, it is possible to observe 5 heads in 10 flips
even with an unfair coin where π = 0.4, 0.6, or even 0.3.
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The Likelihood Function

I You can see from the previous example that different values of
π could have produced our 5 heads in 10 flips.

I Only one value of π, however, is most likely.

I We can thus think of a function that would describe the
probability (or likelihood) that different parameter values
produced our data.

I This is the likelihood function.

I The value which maximizes the likelihood function is the
Maximum Likelihood Estimator.
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The Likelihood Function

The likelihood function for π, given 5 heads in 10 flips of a coin:
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The Likelihood Function

More formally:
Let f (y|θ) be the Probability Density Function (PDF) consisting of
a single parameter θ, and let D denote the observed data
consisting of n independent observations.

Pr(D) = f (y1, y2, ..., yn|θ) (1)

= f (y1|θ)f (y2|θ) . . . f (yn|θ) (2)

=
∏

f (yi |θ) (3)

= L(θ|D) (4)

I (2) follows from the independence of observations. (The probability of
two independent observations is the product of their individual
probabilities).

I The step from (3) to (4) is the ‘reversal’ from probability (where we
explain outcomes with parameters) to likelihood (where we explain
parameters with outcomes or data).
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Distributional Assumptions

I Notice that the likelihood function is based on a Probability
Density Function which gave rise to our data.

I Thus, whenever we do MLE, we must make a distributional
assumption about our data.

I Based on our knowledge and theoretical expectations, we – as
researchers – need to decided what distribution is behind our
data (binomial, poisson, normal...).

I Consequently, it is necessary to think through the theoretical
background to a phenomenon, and the distributional
implications that it has.

I This makes MLE a more theoretically rich method than OLS or
GLS, which are essentially “data fitting.”

I “All knowledge is a result of theory – we buy information with
assumptions” (Coombs 1976:5)
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Log-Likelihood

To make life easier for ourselves and our computers, we take the
natural logarithm of our likelihood function before maximization.

lnL(θ|D) = ln[
∏

f (yi |θ)] (5)

=
∑

ln[f (yi |θ)] (6)

= `(θ|D) (7)

I `(θ|D) is the log-likelihood function of θ, given our data.

I Notice that the product in (5) turned into summation in (6).
Computers are better able to deal with summation than
multiplication, hence the logarithmic transformation.

I Importantly, the maximum of the log-likelihood function is the
same as the maximum of the likelihood function. We lose no
information!
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Estimating π

We see 5 heads in 10 flips of a coin. What value of π produced
this result?

I First we need to consider the distribution which gave rise to
this data!

I Since we are considering flips of a coin, the data is generated
from the Binomial Distribution:

f (heads, flips|π) = L(π|heads, flips) =

= flips!
heads!(flips−heads)!π

heads(1− π)flips−heads

I We thus need to find the maximum of the log-likelihood
function: ln[(10!/5!5!)π5(1− π)5] with respect to π.

I If you do the calculus, you should conclude that the maximum
occurs when π = 0.5

I You have just derived your first ML estimator!
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Intuition Behind Parameter Variance

We have now obtained a point estimate for π, but what about our
certainty about the accuracy of this estimate?

I Logically, the steeper the (log-) likelihood function, the easier
it is to find its maximum.

I The easier it is to declare the maximum, the more certain we
are about this maximum.

I Thus, the larger the curvature of the (log-) likelihood
function, the greater is our certainty of the estimate.

I Formally, this means that the larger the second partial
derivative with respect to a given parameter, the more certain
we are about the estimate of this parameter.

I In practice we tend to used the inverse of the negative expected values of
the second partial derivatives to determine the variance-covariance
matrix, but that is really a technical matter... (see Long p.32)
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ML Estimation of Linear Regression

The model is: yi = xiβ + εi , where εi ∼ N(0, σ2)

I We thus need to estimate the βs in the vector β (which
includes a constant), as well as σ2.

I Given the assumptions about the error distribution, the PDF
of the dependent variable is: f (yi |xi , β, σ

2) ∼ N(xiβ, σ
2)

The Normal PDF is:
f (yi |µ, σ2) = ( 1√

2πσ2
) exp[− 1

2σ2 (yi − µ)2]

The likelihood function is:
L = (2πσ2)−.5nexp(− 1

2σ2

∑
(yi − xiβ)2)

The log-likelihood function is:
`(β, σ2|y , x) = −.5nln(2π)− .5nln(σ2)− 1

2σ2

∑n
i=1(yi − xiβ)2

I [See example in R]
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Conclusion

I MLE is a powerful, theoretically rooted method.

I It allows estimation of many different classes of models, and
thus is much more versatile than OLS.

I ML estimation centers around the (log-)likelihood function.
This function is the basis for both point estimates, as well as
confidence intervals and hypothesis testing.

I MLE is thus a unified method of statistical estimation.

Jan Rovny The Logic of Maximum Likelihood Estimation


