
Quantitative Analysis and Empirical Methods
Multiple Regression

Jan Rovny

Sciences Po, Paris, CEE / LIEPP

Jan Rovny Quantitative Analysis and Empirical Methods



Overview

Control variables

Comparing coefficients

Testing hypotheses

Model comparison

Jan Rovny Quantitative Analysis and Empirical Methods



Introduction

We now know how to model a relationship between two
variables X and Y using simple regression

In reality, of course, we believe that there are multiple
predictors (or X s) which cause Y

We thus want to model Y as a function of multiple predictors

Furthermore, we want to introduce certain control variables
into our model

To do this, we must run multiple regression analysis
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Multiple Regression Model

yi = β0 + β1xi1 + β2xi2 + ...+ βKxiK + εi

R:
model<-lm(depvar ~ indepvar + indepvar + indepvar...)

βK , where K ≥ 1, is a partial regression coefficient, which
gives the effect of the predictor xK purged of all the influence
of the other predictors.

This amounts to a ceteris paribus clause (or holding all else
constant)

A unit increase in xK thus leads to βK change in y .
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Control Variables

Our theory generally implicates one (or a small number) of
predictors as the key determinants of the dependent variable.

We, however, often agree that there may be other causes of
our dependent variable

In such a scenario, we want to establish that our predictor of
interest (X1) causes Y independently of other predictors Xk .

That is to say that our hypothesized X1 has a substantively
and statistically significant effect on Y even when other
predictors are present.
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Control Variables Eg.

Example with religiosity and happiness.

Surely, income is an important determinant of happiness too...

What if income trumps religiosity in explaining happiness?

Model 1

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8792 0.0813 84.65 0.0000
Religiosity 0.1455 0.0463 3.15 0.0017

R2: 0.01254 Adj R2: 0.01127

Model 2

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.1846 0.1771 34.91 0.0000
Religiosity 0.1573 0.0458 3.43 0.0006

Income 0.1629 0.0370 4.40 0.0000
R2: 0.03647 Adj R2: 0.034

Clearly, both income and religiosity cause happiness
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The Dilemma

Parsimony Validity

Preference given to models Preference given to models
with fewer parameters that fit data better
To improve parsimony, To improve validity,
drop predictors add predictors

Since R2 is a non-decreasing function as we add additional
predictors, irresponsible analysts may ‘overfit’ their models,
atheoretically adding variables.

To guard ourselves from non-parsimonious models, we prefer
the adjusted R2 (denoted as R̄2) as a measure of model fit,
since it adjusts for the number of predictors included in the
model.

R̄2 = 1− (1− R2) n−1
n−k−1 Model summary in R reports R̄2
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Comparing Regression Coefficients

Since in most cases the scales of predictors are different, it is
impossible to directly compare regression coefficients.

In order to be able to compare the coefficients, they must be
converted to comparable scales.

The most common solution is to standardize all predictors

xstd = x−meanx
sdx

The problem is that we create variables with identical means
and standard deviations, which makes other important
comparisons impossible.
Easy solution in R:
library(lm.beta) [Return] lm.beta(modelname)

Jan Rovny Quantitative Analysis and Empirical Methods



Hypothesis Testing Procedure

1 State a null and alternative hypothesis: H0 : µ = µ0,
Ha : µ 6= µ0

2 Select a level of significance of interest: α = .05 (we want to
be 95% sure.)

3 Determine the sampling distribution of the test statistic. (If
we are dealing with a means test and we know σ, we use the
standard normal distribution and its Z statistic, if we are
dealing with a means test and we don’t know σ we use
Student’s t distribution and the T statistic.)

4 Calculate the test statistic (for t: t = β̂k−b
σ̂β̂k

)

5 Find the critical value in the appropriate statistical table

6 Make a conclusion about the null hypothesis (reject or fail to
reject)
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T-test

The T-test provides a method for testing whether our β
coefficients are equal to a certain number.

The most common null hypothesis is that βx = 0 (x has no
effect on y).

Every null hypothesis indicates an alternative hypothesis or
Ha, which is the logical opposite of H0. In our example
Ha : βx 6= 0 (x has an effect on y).

To test our H0 we solve: t = β̂x−0
σ̂β̂x

.

The resulting t-value is then applied to the t-table with the
relevant degrees of freedom.

To avoid going to the tables, we can use the short-hand “2-t
rule of thumb:” (assuming sufficient d.f.)
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T-test Example

Coef. Std. Err. t P > |t| [95% Conf. Interval]

x1 .9302514 .2155127 4.32 0.000 .5068189, 1.353684
x2 -1.146999 .2490548 -4.61 0.000 -1.636334, -.6576643
x3 .6640873 .3977576 1.67 0.096 -.1174141, 1.445589
x4 .495263 .4368451 1.13 0.257 -.3630363, 1.353562
cons .3553831 .1233497 2.88 0.004 .1130296 .5977366

N=500 F(4, 495)=30.33 P > F=.000 R2 = 0.1969 AdR2=0.1904 Root MSE=2.7512

Test the possibility that the true value of βx1 = 0.7
Is β̂x1 significantly different from 0.7?

t = β̂k−b
σ̂β̂k

= .930−.7
.216 = .23

.216 = 1.06

Check this t-value in the t-table with 495 degrees of freedom at
the 0.05 confidence level.
The critical value here is 1.96, which is greater than 1.06
We thus fail to reject H0 : βx1 = 0.7.
β̂x1 = .93 is not significantly different from 0.7.
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Two-Tailed v. One-Tailed Tests

Until now, we have been doing our t-tests as if we had no
expectation about the direction of the relationship between x
and y .

As a result, when we were testing whether our βx is
significantly different from 0, we looked at both ends (or tails)
of the distribution of βx . This was a two-tailed test.

In reality, we often have theoretical expectations about the
direction of the relationship between x and y (increased
income causes increased happiness etc.)

Consequently, when testing whether βx is significantly
different from 0, we would expect 0 to be on one particular
side of the distribution of βx . Here we can do a one-tailed
test.

In practice, this means that we can divide our p-values by two.
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F-test

In the most classical F-test we assess the null hypothesis that
all our predictors are equal to zero:

H0 : β1 = β2 = ... = βk = 0,

This tests the overall significance of our regression model. R
automatically reports this test.

The logic of the F-test is that if all predictors are 0, then the
sole source of variation in y is the error term e.

This effectively means that we need to check the relative size
of the Regression Sum of Squares (RSS) to Error Sum of
Squares (ESS), while taking into account the relevant df .

The test thus is: F = RSS/df
ESS/df = RSS/(k)

ESS/(n−k−1) = R2/k
(1−R2)/(n−k−1)

Can test other restrictions...
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Combined T-test

Testing the null hypothesis that: H0 : β1 = β2 or equivalently
β1 − β2 = 0, we use the Combined t-test:

Combined − T = β̂1−β̂2√
σ2
β̂1

+σ2
β̂2
−2σ2

β̂1,β̂2

Here we need to know the variance and covariance of our
estimators.

We can get this information from the so-called
variance-covariance matrix of estimators (VCE)

In R: ’vcov(model)’
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Model Comparison

When we compare different regression models we differentiate
between Nested and Non-Nested models:
1. Nested Models

A nested model M2 is nested in another model M1, if M2 is a
special case of M1:

M2 : yi = β0 + β1xi + β2zi + εi and

M1 : yi = β0 + β1xi + β2zi + β3wi + β4ri + εi

Here it is clear that M2 is a special case of M1, since M1
arises when β3 = β4 = 0 Thus M2 is nested in M1.

2. Non-Nested Models

M2 : yi = β0 + β1xi1 + β2zi + εi

M1 : yi = γ0 + γ1qi1 + γ2ri + εi

Here yi is seen as a function of different predictors. These
models are thus non-nested.
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Comparing Nested Models

Restricted : yi = β0 + β1xi + β2zi + εi

Full : yi = β0 + β1xi + β2zi + β3wi + β4ri + εi

We want to know whether adding w and r improves our model
significantly

To test this, we perform the Joint F-test:

F − test = RSSR−RSSUR/m
RSSUR/n−k−1 ∼ Fm,n−k−1

Here m is the number of restrictions (number of excluded
variables - in our case 2)
k is the number of predictors in the full model.
We apply the result to the F distribution where the 1st d.f. is
m and the second d.f. is n − k − 1.
If the associated p-value is smaller than our selected
significance level, we conclude that the full model is a
significant improvement.
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Comparing Non-Nested Models

Since models are not linear restrictions of each other, we
cannot use the F-test

We must rely on another approach:

Akaike’s Information Criterion (AIC):

AICi = −2li + 2Ki ,

Baysian Information Criterion (BIC):

BICi = −2li + Ki ln(n) (penalizes more for predictor inclusion)

where i denotes a particular model,

li is the log-likelihood function of a particular model

Ki is the number of estimated parameters of a given model.

AIC / BIC is a combined measure of fit and parsimony .

The model with the smallest AIC / BIC is preferred.

R: AIC(modelname) or BIC(modelname)
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