# Quantitative Analysis and Empirical Methods Regression

Jan Rovny

Sciences Po, Paris, CEE / LIEPP

#### Overview

- Logic of regression
- Interpreting regression results
- Linearity of OLS and curvilinear relationships
- Regression assumptions
- Decomposition of sample variance
- Goodness of fit

### Regression

- How do we go about addressing change and response in variables?
- Correlation only tells us the extent to which pairs of variables are a linear function of each other. It does not tell us how change in one translates into change in another.
- Correlation also treats both variables as identical. Correlation between 'smile' and 'flowers' is the same as the correlation between 'flowers' and 'smile'.
- Our answer is Regression:
- Regression models one variable as a dependent variable, which is predicted by an independent variable (also known as the predictor).
- We write that  $y_i = \beta_0 + \beta_1 x_i + \epsilon$



## The Regression Model

- $y_i = \beta_0 + \beta_1 x_i + \epsilon$
- This models a relationship between Y the dependent variable and X - the predictor.
- $\beta_0$  is the intercept the expected value of y when x = 0
- β<sub>1</sub> is the slope coefficient. It describes the direction and steepness of the regression line. It is the expected change in y for a unit change in x, holding all else constant. This is the most important piece of information for us, because it describes the relationship between x and y.
- x<sub>i</sub> is the predictor, treated as fixed (that is non-random or 'error-less') variable.
- $\epsilon_i$  is the stochastic (random) component. It expresses the disturbance or error term. It includes measurement error on y, omitted predictors and idiosyncratic sources of behavior. Error is a very interesting animal (to be discussed later)...



- A real example from Morg05.dta dataset on wages in the U.S.
- I am interested in seeing how 'gender' affects 'wage.' I thus regress:  $wage = \beta_0 + \beta_1 sex + \epsilon_i$
- In R: model<-lm(wage~sex)
- My results are the following: wage = 19.350 + (-3.629)sex
- What does this mean?
  - $\beta_0 = 19.350$  This is telling us the average value of y when x = 0. When does x = 0?

- A real example from Morg05.dta dataset on wages in the U.S.
- I am interested in seeing how 'gender' affects 'wage.' I thus regress:  $wage = \beta_0 + \beta_1 sex + \epsilon_i$
- In R: model<-lm(wage~sex)
- My results are the following: wage = 19.350 + (-3.629)sex
- What does this mean?
  - $\beta_0 = 19.350$  This is telling us the average value of y when x = 0. When does x = 0?
  - x = 0 means that sex=0, that is sex=male. Therefore, 19.35 is the average wage of a male.

- A real example from Morg05.dta dataset on wages in the U.S.
- I am interested in seeing how 'gender' affects 'wage.' I thus regress:  $wage = \beta_0 + \beta_1 sex + \epsilon_i$
- In R: model<-lm(wage~sex)
- My results are the following: wage = 19.350 + (-3.629)sex
- What does this mean?
  - $\beta_0 = 19.350$  This is telling us the average value of y when x = 0. When does x = 0?
  - x = 0 means that sex=0, that is sex=male. Therefore, 19.35 is the average wage of a male.
  - $\beta_1 = -3.629$  This is telling us the expected change in y when x changes by 1. What does that mean?



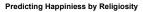
- A real example from Morg05.dta dataset on wages in the U.S.
- I am interested in seeing how 'gender' affects 'wage.' I thus regress:  $wage = \beta_0 + \beta_1 sex + \epsilon_i$
- In R: model<-lm(wage~sex)
- My results are the following: wage = 19.350 + (-3.629)sex
- What does this mean?
  - $\beta_0 = 19.350$  This is telling us the average value of y when x = 0. When does x = 0?
  - x = 0 means that sex=0, that is sex=male. Therefore, 19.35 is the average wage of a male.
  - $\beta_1 = -3.629$  This is telling us the expected change in y when x changes by 1. What does that mean?
  - When x shifts by 1, that is shifts from 0=male to 1=female. Hence -3.690 is the average effect of being a woman on wage. It decreases by \$3.69 per hour. An average female wage is thus 19.35 3.62 = 15.721.

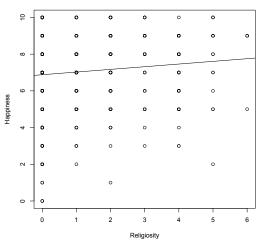


- Does being more religious lead to greater perceived happines?
- $happy = \beta_0 + \beta_1 religiosity + \epsilon_i$

|             | Estimate | Std. Error | t value | Pr(> t ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | 6.8792   | 0.0813     | 84.65   | 0.0000   |
| Religiosity | 0.1455   | 0.0463     | 3.15    | 0.0017   |

## Regression Graph





#### How does it work?

• 
$$\hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$
,  $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 * \bar{X}$ 

- $\hat{\beta}_1$  the covariance of XY divided by the variance of X. It minimizes the sum of squares of the residuals
- This is the so-called Ordinary Least Squares Estimator:

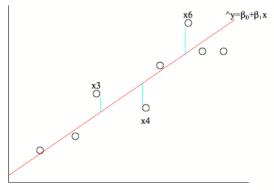


Figure: default



# Why an Estimator?

- $\hat{\beta}$ s are Estimators, because they estimate the true relationship between X and Y, which is  $\beta$ . (We know samples, but we care about populations, which we do NOT know.)
- Since  $\hat{\beta}$ s are derived from samples, it is clear that they are likely to vary from sample to sample. The  $\hat{\beta}$ s are *estimates*, and they thus have a certain variance.
- We can think of estimator variance as the **uncertainty** about the point estimate (our best guess at the true value of  $\beta$ ).

#### Estimator Variance

- From our sample, we know the standard error of the regression  $\hat{\sigma} = \sqrt{\frac{\sum e_i^2}{N-2}}$  (note that we burn 2 d.f. estimating  $\beta_0$  and  $\beta_1$ )
- This is the standard deviation of the Y values around the estimated regression line.
- We can derive the variance of  $\hat{\beta}_0$  and  $\hat{\beta}_1$ , and consequently their **standard error**:  $s_{\hat{\beta}_0} = \sqrt{\frac{\sum x_i^2}{N*\Sigma(x_i-\bar{X})^2}}\sigma$ , and  $s_{\hat{\beta}_1} = \frac{\sigma}{\sqrt{\Sigma(x_i-\bar{X})^2}}$ .
- What will be the distribution of our  $\hat{\beta}$ s?

#### Estimator Variance

- From our sample, we know the standard error of the regression  $\hat{\sigma} = \sqrt{\frac{\sum e_i^2}{N-2}}$  (note that we burn 2 d.f. estimating  $\beta_0$  and  $\beta_1$ )
- This is the standard deviation of the Y values around the estimated regression line.
- We can derive the variance of  $\hat{\beta}_0$  and  $\hat{\beta}_1$ , and consequently their **standard error**:  $s_{\hat{\beta}_0} = \sqrt{\frac{\sum x_i^2}{N*\sum (x_i \bar{X})^2}} \sigma$ , and  $s_{\hat{\beta}_1} = \frac{\sigma}{\sqrt{\sum (x_i \bar{X})^2}}$ .
- What will be the distribution of our  $\hat{\beta}$ s?
- Remember, the Central Limit Theorem??? Yes, it will be NORMAL!



#### Estimator Variance

- From our sample, we know the standard error of the regression  $\hat{\sigma} = \sqrt{\frac{\Sigma e_i^2}{N-2}}$  (note that we burn 2 d.f. estimating  $\beta_0$  and  $\beta_1$ )
- This is the standard deviation of the Y values around the estimated regression line.
- We can derive the variance of  $\hat{\beta}_0$  and  $\hat{\beta}_1$ , and consequently their **standard error**:  $s_{\hat{\beta}_0} = \sqrt{\frac{\sum x_i^2}{N*\Sigma(x_i-\bar{X})^2}}\sigma$ , and  $s_{\hat{\beta}_1} = \frac{\sigma}{\sqrt{\Sigma(x_i-\bar{X})^2}}$ .
- What will be the distribution of our  $\hat{\beta}$ s?
- Remember, the Central Limit Theorem??? Yes, it will be NORMAL!
- It follows that  $rac{\hat{eta}-eta}{\sigma_{\hat{eta}}}\sim \mathit{N}(0,1)$  and  $rac{\hat{eta}-eta}{s_{\hat{eta}}}\sim t_{n-2}$
- This is the t-test we can see in our statistical output.



#### The t-test

- The t-test in our statistical output asks the most fundamental question: Is  $\hat{\beta}=0$ ?
- This is effectively asking, is my estimate of  $\hat{\beta}$  sufficiently different from 0? Does my variable have any effect?
- Or What is the chance that the true value of  $\beta$  could be 0?
- Easy, we did this before with our z- and t-tests.
- We generally take the 95% confidence interval and ask ourselves whether 0 lies outside this interval.
- This tells us the statistical significance of a variable

|             | Estimate | Std. Error | t value | Pr(> t ) | [95% C | onf. Int.] |
|-------------|----------|------------|---------|----------|--------|------------|
| (Intercept) | 6.8792   | 0.0813     | 84.65   | 0.0000   | 6.719  | 7.038      |
| Religiosity | 0.1455   | 0.0463     | 3.15    | 0.0017   | 0.054  | 0.236      |



#### Review

- Regression equation:  $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
- The logic is that we minimize the squared residuals by fitting the 'best line' through the data.
- From our sample data, we obtain **point estimates** of  $\hat{\beta}_0$ , the intercept, and  $\hat{\beta}_1$ , the slope coefficient.
- The point estimates give us the 'best guess' of the values
- Then, from the errors we are able to establish the **standard** error of our estimators  $(\hat{\beta}_0, \hat{\beta}_1)$
- The standard error tells us the dispersion (or spread) of our estimators, effectively telling us how certain we are about our point estimates.



## Interpreting a Regression

- Substantive Significance
  - How strong is the effect of X on Y? Does a change in X lead to a substantial change in Y.
  - This is a matter of argument, but you should report for example that 'having a BA, as opposed to a highschool diploma increases your expected income by so many dollars.'
- Statistical Significance
  - How sure are we about our result? Is it significantly different from 0?
  - This has to do with the size of the standard error of our estimator. We must choose a **level of significance**, which is usually 95%. Then we perform a t-test, on whether our point estimate is significantly different from 0. If yes, we can say that our estimator 'is statistically significant at the .05 level.'
  - An easy way to check what level our estimator is significant at, we look at the p-value reported by R.



## Regression Output

Predicting Happiness (0-10) with Religiosity (0-6), ESS CZ

|             | Estimate | Std. Error | t value | Pr(> t ) | [95% C | onf. Int.] |
|-------------|----------|------------|---------|----------|--------|------------|
| (Intercept) | 6.8792   | 0.0813     | 84.65   | 0.0000   | 6.719  | 7.038      |
| Religiosity | 0.1455   | 0.0463     | 3.15    | 0.0017   | 0.054  | 0.236      |

- The results of this model suggest that Religiosity is a substantively and statistically significant predictor of happiness.
- Substantively, attending religious services every day as opposed to never increases the expected happiness by about 9% (6 \* 0.1455 = 0.873, happy is a 10 point scale, thus roughly 0.9 points out of 10)
- Statistically, our t-value of 3.15 is significant at the .05 level (as well as at the .01 level).
- Shortcuts:
  - ullet 1) t-value> 2; 2) confidence interval does not pass through 0



## Linearity of Linear Regression

- 'Linear' Regression means that that the  $\beta$  coefficients of the regression are linear, that is they are raised to the first power only.
- Linear Regression, however, can model non-linear relationships between X and Y. That is, linear regression need not be linear in the variables.
- We can thus fit a quadratic model:  $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$ , which models a curvilinear relationship between X and Y.
- R will fit the  $\beta$ s in such a way as to minimize the square residuals, that is it will draw the 'best fitting' regression curve.
- Example: modeling curvilinear relationships (Functions Calculator)



## Regression Assumption #1

- I. The most important assumption
- 1. Model is correctly specified
- Formally: Mean Independence:  $E(\epsilon_i) = 0$ , which means that the mean value of  $\epsilon$  does not depend on any of the predictors.
- Model includes all relevant predictors in the correct functional form (squares, interactions etc.).
- If this does not hold, there is omitted variable bias, the OLS estimator is biased and inconsistent = WRONG
- Specification error is a central problem for which there is no statistical solution.
- We must turn to theory!



## Assumptions about Errors

- 2. Linearity: y is a linear function of the xs.
  - Violation of 1. and 2. causes point estimate bias!
- 3. Normality:  $\epsilon_i \sim N(0, \sigma^2)$  We assume that the error is normally distributed (around the regression line).
  - 3. is important for inference, allows us to use t-tests.
- 4. Homoscedasticity:  $Var(\epsilon_i) = \sigma^2$ : variance of errors is constant.
- 5. Nonautocorrelation:  $Cov(\epsilon_i, \epsilon_j) = 0 \ (i \neq j)$ , errors are independent. (Problem in time-series data.)
  - 4. and 5. do not effect point estimates, only determine the standard errors.

## Decomposition of Sample Variance

- Our main quest is to explain the variance in the dependent variable Y
- The values of Y differ because of the relationship between Y and X, and because of random error.
- The question is, how much of the observed variation on Y is caused by X and how much of it is due to error.
- This effectively tells us how much of the variance of Y is explained by our model (X) and how much of it is due to (unexplainable) error.
- It is thus important to 'decompose' the variance of Y:

## Decomposition of Sample Variance 2

- Total Sum of Squares (TSS) =  $\sum (Y_i \bar{Y})^2$ 
  - Is a summary measure of the distances of observations on Y
    from the mean. It is the total variation of the actual Y values
    about their sample mean.
- Regression Sum of Squares (RSS) =  $\sum (\hat{Y}_i \bar{Y})^2$ 
  - $\bullet$  The vertical distance of the regression line from  $\bar{Y}$  is the variation of Y ascribed to X
- Error Sum of Squares (ESS) =  $\sum e_i^2$ 
  - The vertical distance of the observed point  $Y_i$  from the regression line (or the residual) is the variation in Y ascribed to error

$$\begin{array}{cccc} \sum (Y_i - \bar{Y})^2 & = & \sum (\hat{Y}_i - \bar{Y})^2 & + & \sum e_i^2 \\ \text{TSS} & \text{RSS} & \text{ESS} \end{array}$$



# Decomposition of Sample Variance 3

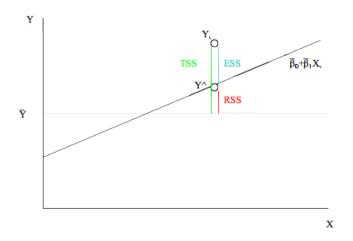


Figure: Variance Decomposition

#### Goodness of Fit

- This leads to the measure of 'goodness of fit' R<sup>2</sup>, which is fundamental for telling us how well our model does in explaining our dependent variable Y
- $R^2$  is the ratio of variance explained by X and the total variance:

$$R^2 = \frac{RSS}{TSS} = 1 - \frac{ESS}{TSS}$$

- $R^2$  is bounded between 0 and 1, where 0 means no variance of Y is explained by X and 1 means all variance of Y is explained by X (there is no error).
- $R^2$  effectively tells us how 'tightly' our observations lie around the regression line.

