Quantitative Analysis and Empirical Methods

7) Assessing Relationships

Jan Rovny

Sciences Po, Paris, CEE / LIEPP

Overview

- Categorical on Interval Variables
- Categorical on Categorical Variables
- χ^{2} test
- Interval on Interval Variables
- Third Variables

Introduction

		Dependent Variable			
		Categorical	Interval		
Indep. Variable		Crostabs	Crosstabs		Compare means
:---					
Interval					

Categorical on Interval Variable

Interval DV, Categorical IV

- Does the predominant religion of a country affect its income?
- GDP $<-$ religion
- Compare means

	N	Mean	Std. Dev.	Min	Max
Protestant	30	30321.38	5199.057	22386.6	41245.8
Mixed	18	28380.27	6094.755	22295.1	38826.8
Catholic	48	19612.95	5732.95	10942.8	30669.4

- What do you want to know?

Means difference test Protestant v. Catholic

- $T=\frac{H_{a}-H_{0}}{s_{\text {diff }}}$;

$$
s e_{\text {diff }}=\sqrt{s e_{1}^{2}+s e_{2}^{2}} ; \quad s e=\frac{s}{\sqrt{N}}
$$

- Here:
$s e_{\text {diff }}=\sqrt{(5199.057 / \sqrt{30})^{2}+(5732.95 / \sqrt{48})^{2}}=1259.2576$
- $T=\frac{10708.43-0}{1259.2576}=8.5037$
- Where is that on the T-distribution?
- Far out! Reject H_{0}, and conclude that there is a significant difference in income between Protestant and Catholic countries.

Categorical on Categorical Variable

Categorical DV, Categorical IV

- You claim that women are more likely to watch the Academy Awards than men.
- Your friend tells you that he has a male friend who always watches the Oscars, and that you cannot 'generalize'.
- Can you generalize?

Testing Categorical DV on Categorical IV

- Collect data

Obs.	Gender	Watch
1	F	Y
2	F	N
3	M	Y
4	F	N
5	F	Y
6	M	N
7	F	Y
8	M	Y
\ldots	\ldots	\ldots
1004	F	Y

- A bit overwhelming...

Categorical DV, Categorical IV

- Crosstabulation

	Female	Male
Watch	331	170
Don't Watch	210	293

- Would be easy if it were something like this:

	Female	Male
Watch	502	50
Don't Watch	50	402

Categorical DV, Categorical IV

- Need to compare the values of the DV across the IV
- Calculate proportions of columns (IV), and compare across rows (DV)
- Watch out, sometimes DV is in columns, so need to inverse the process

	Female	Male	Total
Watch	331	170	501
	61%	37%	
Don't Watch	210	293	503
	39%	63%	
Total	541	463	1004
	100%	100%	

Categorical DV, Categorical IV

- Are viewers more likely to be female than male?
- Calculate proportions of rows (IV), and compare across columns (DV)

	Female	Male	Total
Watch	331	170	501
	66%	34%	100%
Don't Watch	210	293	503
	42%	48%	100%
Total	541	463	1004

χ^{2} test

Testing relationships between categorical variables

- We want to test how cases are dispersed across the dependent variable
- $H_{0}=$ every category of the IV should have the same distribution as the total, i.e. the IV does not matter.
Party ID and career crosstabulation

		Law	Politics	Business	Education	Total
Republican	N	6	2	5	1	14
	$\%$	42.9	14.3	35.7	7.1	100
Democrat	N	10		10	2	
	$\%$	41.7	41.7	8.3	8.3	24
						100
Other	N	6	5	7	3	21
	$\%$	28.6	23.8	33.3	14.3	100
Total	N	22	17	14	6	59
	$\%$	37.3	28.8	23.7	10.2	100

χ^{2} Test

- To test H_{0}, we use the χ^{2} (read chi-squared) test
- This test compares each observed frequency (fo) with the expected (total) frequency (fe)
- E.g. if H_{0} is correct, 37.3% of the 14 republicans $(=5.22)$ should want to go to into law; and 28.8% of the 14 Republicans ($=4.03$) should want to go into politics
- Test: sum the squared differences and divide by the expected frequency for all cells: $\chi^{2}=\sum_{i=1}^{N} \frac{\left(f f_{i}-f e_{i}\right)^{2}}{f e_{i}}$; where $\mathrm{N}=$ number of cells (12)
Party ID and career crosstabulation

		Law	Politics	Business	Education	Total
Republican	N	6	2	5	1	14
	$\%$	42.9	14.3	35.7	7.1	100
Democrat	N	10	10			
	$\%$	41.7	41.7	8.3	8.3	100
Other	N	6	5			
	$\%$	28.6	23.8	33.3	14.3	100
Total	N	22	17	14	6	59
	$\%$	37.3	28.8	23.7	10.2	

χ^{2} Test

－The χ^{2} test：$\chi^{2}=\sum_{i=1}^{N} \frac{\left(f o_{i}-f e_{i}\right)^{2}}{f f_{i}}=$

$$
(6-5.2)^{2} / 5.2+(2-4.0)^{2} / 4.0+\ldots=7.87
$$

－Apply this value to the χ^{2} distribution with appropriate degrees of freedom
－ $\operatorname{Df}=(\text { number of rows }-1)^{*}($ number of columns -1$)=$ $(3-1) *(4-1)=6$
Party ID and career crosstabulation

		Law	Politics	Business	Education	Total		
Republican	N	6	2	5	1	14		
	$\exp \mathrm{N}$	5.2	4.0	3.3	1.4	14		
	\％	42.9	14.3	35.7	7.1	100		
Democrat	N	10	10	2	2	24		
	$\exp \mathrm{N}$	8.9	6.9	5.7	2.4	24		
	\％	41.7	41.7	8.3	8.3	100		
Other	N	6	5	7	3	21		
	$\exp \mathrm{N}$	7.8	6.1	5.0	2.1	21		
	\％	28.6	23.8	33.3	14.3	100		
Total	N	22	17	14	6	59		
	\％	37.3	28.8	23.7	10.2	100	三	わのく

χ^{2} Test

- Our value of χ^{2} is 7.78
- What is the critical value of χ^{2} at the 0.05 confidence level with 6 df ? Chi2-table
- The answer is 12.592 . Our χ^{2} is smaller than the critical value, so it is possible that 7.87 could occur more than 5 times out of 100 by random chance.
- We fail to reject H_{0}; there is no statistically significant difference between party ID and career choice.

Interval on Interval Variable

Measures of Association

- Is a level of one variable associated with the level of another?
- Sample Covariance: $\operatorname{Cov}(X Y)=S_{(X Y)}=\frac{\sum\left(x_{i}-\bar{X}\right)\left(y_{i}-\bar{Y}\right)}{N-1}$
- Sample Correlation: $\operatorname{Corr}(X Y)=r_{(X Y)}=\frac{\sum\left(\frac{x_{i}-\bar{X}}{S_{X}}\right)\left(\frac{y_{i}-\bar{Y}}{S_{Y}}\right)}{N-1}$
- Correlation standardizes Covariance by dividing covariance by the standard deviations of X and Y .
- Hence correlation is bounded between -1 and 1 .

Scatterplot

X and Y

Figure: Little association: $r_{X Y}=-0.38$

Scatterplot

Figure: Strong association: $r_{X Z}=0.99$

Third Variables

Third Variables

- In reality, we are not just interested in the relationship between two variables
- We want to be sure that the relationship between X and Y takes into account other, potentially intervening, factors.
- How can third variables matter?
(1) Spurious relationships $=$ hidden variable
(2) Multivariate relationships $=$ omitted variable
(3) Conditioned relationships $=$ interaction or moderation

Spurious relationships

- The relationship between X and Y is caused by a hidden third variable Z that causes both X and Y .
- When Z is controlled for, the relationship between X and Y is not significant (not there).
- Shoe size \rightarrow reading ability
- Spurious on age
- If we consider the relationship (shoe size \rightarrow reading ability) within each age category (year), relationship disappears.

Multivariate relationships

- The relationship between X and Y stands, but an omitted third variable also causes Y .
- When Z is controlled for, the relationship between X and Y is altered (weakened or strengthened).
- Religiosity \rightarrow happiness
- Happiness is also caused by income, and income is correlated with religiosity.
- If we control for income, the relationship between religiosity and happiness is altered.

Conditioned relationships

- The relationship between X and Y is moderated by a third variable Z.
- The relationship between X and Y changes as the values of Z change.
- Economic left-right ideology \rightarrow support for EU integration
- Moderated by country
- In Britain, the left is supportive of EU integration, while the right is opposed.
- In Sweden, the left is opposed to EU integration while the right is more supportive...

